





# Selection of Equivalent Steel Materials to European Steel Materials Specifications

**Professional Guide: PG-003 Second Edition** 

K F Chung, H C Ho and W Feng



2021







# Selection of Equivalent Steel Materials to European Steel Materials Specifications

K F Chung, H C Ho and W Feng

Professional Guide: PG-003

July 2021

# Jointly published by

Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch)
The Hong Kong Polytechnic University
Chinese National Engineering Research Centre for Steel Construction
Hong Kong Constructional Metal Structures Association

# Supported by

China Iron and Steel Association

Construction Industry Council, Hong Kong SAR

#### Disclaimer

No responsibility is assumed for any injury and / or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

#### Copyright © 2021 reserved by the Hong Kong Polytechnic University.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Printed by The Hong Kong Polytechnic University ISBN: 978-962-367-872-8

First Edition published in 2015

Among various international steel materials specifications, European steel materials specifications have been widely adopted in many countries all over the world owing to their high credibility and applicability levels. However, owing to differences in technological developments over the past 30 years, Chinese steel materials specifications have different acceptance criteria and follow different quality assurance procedures than is the case with European steel materials specifications. These technical differences cause practical difficulties to many design and construction engineers in accepting Chinese steel materials and structural products in international construction projects. The current situation, therefore, is highly unfavourable to the wide adoption overseas of Chinese steel materials, and this presents severe challenges to any substantial export growth of Chinese steel products.

The launching of this Professional Guide on "Selection of Equivalent Steel Materials to European Steel Materials Specifications" will help promote exports of high quality Chinese steel materials. The Guide tackles the practical problems encountered by thousands of design and construction engineers overseas in accepting Chinese steel materials as equivalent to European steel materials specifications by providing comprehensive technical information and the essential considerations involved in assessing the equivalence of steel materials from different countries. Through the use of this document, design and construction engineers are able to identify and readily establish equivalent Chinese steel materials.

As one of the publishers of this document, the Chinese National Engineering Research Centre for Steel Construction is delighted to witness the technological achievements displayed in the document. Publication of this document will contribute positively to continual research and development on high quality constructional steel by both the China Iron and Steel Industry and the Chinese Steel Construction Industry. Moreover, it will definitely promote further developments of modern steel construction technology in China and beyond.

Mr. Zhao-Xin HOU

Chief Engineer
Chinese National Engineering Research Centre
for Steel Construction
Beijing, China

First Edition published in 2015

With the support of national policies, the Chinese Steel Construction Industry has made rapid developments since 1990. A large number of enterprises with highly skilled structural steelwork designers and fabricators using advanced engineering technologies have emerged, pushing forward technological advances in the steel construction industry at an unprecedented pace. Since 2000, these enterprises have expanded out from their home bases to participate in many construction projects overseas, and contribute to the successes of many huge infrastructure developments in many parts of the world.

Owing to ever-increasing internationalization in the global construction market, it is important for Chinese steel materials to be used successfully in various foreign countries despite the fact that these countries have their own steel materials specifications. In recent years, it has become strategically important for Chinese steel materials to be directly accepted as equivalent European steel materials in many parts of the world. This particular development is generally thought to be an important breakthrough, supporting the continual business developments of these enterprises in the global construction market. It is also a direct response to the calls of the Chinese Steel Construction Industry for scientific and technological developments.

This Professional Guide on "Selection of Equivalent Steel Materials to European Steel Materials Specifications" presents design methodologies to establish selected steel materials as equivalent European steel materials. Based on the key technical requirements for various types of structural steelwork, chemical composition and mechanical properties have been examined systematically in classifying where equivalence lies.

This Professional Guide presents a comprehensive view on the equivalence of steel materials which is technically sound, and highly practical. It is expected that the acceptability of Chinese steel materials overseas and the competitiveness of Chinese Steel Construction Industry will be enhanced in securing international construction projects. Meanwhile, more research effort should be devoted by steel construction experts, senior design and construction engineers, and structural steel researchers in order to further promote the internationalization of the Chinese Steel Construction Industry.

Mr. Bing YAO

President
China Construction Metal Structure Association
Former Chief Engineer
Ministry of Construction, People's Republic of China

First Edition published in 2015

In recent years, the Chinese Iron and Steel Industry has made tremendous progress improving the qualities and outputs of steel materials, reducing the consumption of energy and the emission of greenhouse gases, and pioneering sustainable development in steel production. Nowadays, China is the largest steel producer in the world, and its annual production in 2013 is estimated to be 822 million metric tons\*, being 54.3%\* of world production. Moreover, it is well equipped with modern manufacturing facilities producing high quality steel materials with rigorous quality control and technological innovations. All of these are well recognized by the iron and steel industries of many countries. Hence, the Chinese Iron and Steel Industry has ever increasing influence on the iron and steel industries worldwide.

Steel materials are essential for construction in many countries, and steel construction standards are key engineering references for design, fabrication and construction of structural steelwork. At present, Chinese steel materials are not only able to fulfil the demands of the domestic construction industry in China, but are also exported to Southeast Asia, the European Community, the Americas, etc.. However, owing to the differences in various national structural steel specifications, Chinese steel materials often find difficulty in being accepted overseas. Moreover, many designers are not able to specify Chinese steel materials because of the lack of suitable design guidance. Hence, comparative analyses between European and Chinese steel materials specifications and advancement of the equivalence of high quality Chinese steel materials will not only improve the quality of Chinese steel materials, but also encourage technological collaboration and trade development between China and the European Community, and further facilitate the sustainable development of the Chinese Steel Constriction Industry.

Professor K.F. Chung, Professor S.P. Chiew and Mr. Y.H. Lee together with their research teams and engineering staff are committed in promoting the effective use of Chinese steel materials in construction worldwide. Based on their many years of experience in international engineering practice and structural engineering research in Hong Kong, Singapore, Macau, and other Asian countries, they have examined the technical requirements of European steel materials specifications as both explicitly and implicitly specified in Structural Eurocodes. All of these requirements have been assessed thoroughly and compared rigorously with those of Chinese steel materials, and the results are presented systematically in this Professional Guide on "Selection of Equivalent Steel Materials to European Steel Materials Specifications".

This document is well written both technically and from the practical viewpoint, providing specific details on the effects of various chemical elements on the structural performance of

steel materials. Different mechanical requirements for different types of steel materials are also identified. After comprehensive analyses of European and Chinese steel materials against various structural requirements, equivalence of European and Chinese steel materials is formulated in a rational manner. In general, this document will serve as the definitive technical reference for design and construction engineers using Chinese steel materials as equivalent European steel materials for construction purposes. The Guide will foster further research and development work on the equivalence of steel materials manufactured in different countries.

Mr. Zhen-Jiang LIU

Association Representative, Deputy President, and General Secretary China Iron and Steel Association Beijing, China

<sup>\*</sup> Editor's note: Data provided by Chinese Iron and Steel Association in September 2014.

First Edition published in 2015

As a meeting point of the East and the West, Hong Kong has the privilege of enjoying the best of both the East and the West. More importantly, Hong Kong is always able to learn from its contexts and constraints, and then develop its own practice to strive and succeed. At present, there are thousands of design offices, consultancy firms and engineering companies in Hong Kong, and many of them are regional headquarters and strategic offices of international companies in Asia. Hong Kong is truly an international city which is well connected to the rest of the world through flights, phones and the internet.

In respect of infrastructure developments, Hong Kong has witnessed the construction of many famous high-rise buildings and long span bridges designed and constructed by world renowned architects and engineers over the past 40 years. Through construction of these buildings and bridges, Hong Kong construction professionals have worked with thousands of constructional materials from all over the world. These include structural steel materials shipped from the U.K., European Communities, Japan, United States of America, Australia as well as China. Owing to the high levels of technological attainment and practical experience with British Standards, and more recently, Structural Eurocodes, Hong Kong design and construction engineers have been working on overseas construction projects since 1990.

In recent years, many large scale hotels and resorts have been designed and constructed in Macau by Hong Kong construction professionals, and a large number of leading Hong Kong companies of project managers, architects, engineers, surveyors, contractors, building materials suppliers as well as third-party inspection and testing agents have made tremendous contributions to the success of these construction projects. It should be noted that many of these hotels and resorts were designed to American practice, but built by Chinese contractors. Owing to the stringent specifications on building layouts, large enclosed spaces and short construction time, many of the building structures were of structural steelwork. Hence, Hong Kong construction professionals have successfully acquired first-hand professional experience of the latest international practice as well as in supporting the Chinese Construction Industry, in particular, the Chinese Steel Construction Industry.

The first edition of this Professional Guide entitled "Selection of Equivalent Steel Materials to European Steel Materials Specifications" is published in 2015 with a view to assist design and construction engineers in selecting suitable steel materials for structural steelwork which are designed to modern structural steel codes such as the Structural Eurocodes. After a comprehensive review of the chemical compositions and the mechanical properties of many constructional steel materials produced in accordance with the steel materials specifications

of Australia, China, Japan, and U.S.A., equivalent steel materials have been identified which are readily accepted on construction projects. Technically, this Professional Guide provides an international level playing field for all high-quality steel materials produced to various national materials specifications enabling competition based purely on technical grounds. The Guide will generate a huge amount of interest among steel producers and structural steel designers in these countries, including China. Hong Kong design and construction engineers will be able to specify high quality steel materials and structural steelwork with reliable supply, good fabrication and high levels of economy for construction projects in Hong Kong and overseas. This will facilitate further development of Hong Kong as an International Engineering Design Centre for Infrastructure for Asia and beyond.

# **Professor Kwok-Fai CHUNG**

**President**Hong Kong Constructional Metal Structures Association
Hong Kong SAR, China

First Edition published in 2015

Established in 2015, The Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch) aims to promote modern steel construction technology. Its main objectives are:

- To establish a high level technological platform to promote effective design and construction of modern building and civil engineering structures as well as sustainable infrastructure development in Hong Kong.
- To advance technological capabilities of Hong Kong Construction Industry in design and construction of super high-rise buildings, long span bridges and buildings of large enclosure using high performance materials in Hong Kong as well as in overseas.

It is dedicated to promote technological advancement and internationalization of both Hong Kong Construction Industry and Chinese Steel Construction Industry. It is actively engaged with international as well as national exchanges in research and development of steel construction. Its Industrial Collaborators are Development Bureau of the Government of Hong Kong Special Administrative Region, and the Construction Industry Council in Hong Kong.

It is our pleasure to publish the second edition of this Professional Guide. Based on the first edition of this Professional Guide, the following revisions and updates have been made:

- a) key parameters for a wide range of steel materials produced in accordance with Russian steel materials specifications;
- b) high strength S690 steels produced in accordance with Chinese, European and American steel materials specifications; and
- c) latest steel materials specifications in various countries.

It should be noted that many constructional steel materials produced in accordance with the steel materials specifications of Russia have been incorporated into the Professional Guide as an extended scope of steel equivalence. We believe a wide dissemination of the technical information presented in this Professional Guide will greatly facilitate design and construction engineers as well as regulatory agents to use in effective use of steel in construction.

# **Professor Kwok-Fai CHUNG**

Director
Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch)
The Hong Kong Polytechnic University
Hong Kong SAR, China

The iron and steel industry is one of the most important industries for economic development in many countries in the world for a long time. In the past five years, the iron and steel industry in China has developed rapidly, and produced over 50% of the world steel production. With a continual upgrading of smelting technology and rolling equipment, the ranges of specifications of hot-rolled steel sections, steel plates, steel sheets, hollow steel sections, and sheet steel piles as well as other products have been greatly increased. Technological innovation in the iron and steel industry in China provides reliable steel products with guaranteed quality in various mechanical properties and dimensional precision. The iron and steel industry in China has also made huge contributions in the green and low-carbon development of the nation. A large variety of high-quality steel becomes available for realization of complex building structures in a highly efficient manner.

Since its establishment in 2015, the Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch) is a major driving force to promote the research and development of high-performance steel and modern steel construction technology through close collaborations among steel mills, steelwork fabricators, main contractors and design institutes. As a link between China and many parts of the world, the Hong Kong Branch has proactively carried out much research on mechanical properties and structural behaviour of steel structures, and their connections and joints. The scientific basis for an equivalent use of steel materials produced to various national materials specifications has been formulated, and the Professional Guide "Selection of Equivalent Steel Materials to European Steel Materials Specifications" was published in 2015. The Professional Guide provides a wide range of engineering options for design and construction engineers to use steel produced to various steel materials specifications effectively in construction projects. Hence, a scientifically based equivalent steel materials design method to identify suitable steel for replacement to various national steel materials specifications is provided.

We sincerely congratulate the Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch) to publish the second edition of this Professional Guide. We would like to pay tribute to Prof. K.F. Chung, its Director, and his team for their hard work. They have made outstanding contributions in promoting modern steel construction technology and the use of high-quality Chinese steel materials in construction. It is also expected that this Guide will be widely used by design and construction engineers of many international construction projects.

Mr. Jian-Guo ZHU

Director

Chinese National Engineering Research Centre for Steel Construction

Beijing, China

Being the world's largest steel-manufacturing country, China's steel production achieves a rapid growth since the dawn of this century. In recent years, it has produced more than 1.3 billion tons of steel every year, accounting for more than half of the world production. Owing to continual development in the steel-manufacturing process and technology of China's steel industry, the quality of Chinese steel continues to be enhanced. According to the National Strategic Development Policy on "Carbon Peak and Carbon Neutrality", China's steel industry is currently being transformed into a technologically-enabled, sophisticated and green industry, providing a Chinese solution on the low-carbon development for the world's steel industry.

As a strong and versatile structural material, steel is widely used in large structures, such as industrial plants, stadia, transport terminals, bridges, skyscrapers, etc. in many countries all over the world. However, as different steel product specifications and technical standards are adopted in different countries, their engineers are unable to use Chinese steel effectively in design and construction. Hence, this results in a low proportion of Chinese steel adopted in construction overseas, despite of its high quality. Therefore, it is necessary to conduct a systematic comparative analysis on steel product specifications and standards which are widely adopted in construction in various countries, and to enable overseas engineers to clearly understand the advantages of Chinese steel and use them effectively in their construction projects.

The Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch) [CNERC] is committed to promoting the adoption of high-quality Chinese steel in international construction developments, and speeding up the globalistion of the of China's steel construction industry. Since 2011, members of CNERC conducted a series of applied research on the use of Chinese steel, providing systematic comparisons on steel-manufacturing processes as well as chemical compositions and mechanical properties of Chinese steel. In 2015, the Professional Guide entitled "Selection of Equivalent Steel Materials to European Steel Materials Specifications" was published.

In 2018, CNERC launched a project entitled "Use of high-quality Chinese steel to European structural steel design through equivalent use of steel" of the Chinese National Key Research and Development Programme which was supported by the State Ministry of Science and Technology of the People's Republic of China. In this project, steel product specifications and their technical requirements of the European Union, Japan, the United States, Australia, and also Russia were comprehensively analyzed and compared. Through a number of construction projects in Hong Kong, Macau, Singapore, Malaysia and other Asian countries, it was demonstrated that high quality Chinese steel were able to meet various technical requirements of all the specifications in these regions.

The second edition of the Professional Guide "Selection of Equivalent Steel Materials to European Steel Materials Specifications" was published in 2021. It was established that the steel product specifications of China, the European Union, Japan, the United States, Australia, and Russia were compatible, and hence, equivalent. Through provision of a database for "equivalent use of steel", CNERC promotes a wide application of high-quality Chinese steel overseas.

The China Iron and Steel Association recommends "Selection of Equivalent Steel Materials to European Steel Materials Specifications" as a definitive reference for engineers in selecting high quality Chinese steel. The Guide will foster research and development on steel-manufacturing technology, and facilitate improvements on steel quality worldwide. It also lays down a foundation for further development on "equivalent use of steel" in many countries in the world.

Mr. Wenbo HE

General Secretary and Executive President China Iron and Steel Association Beijing, China

# **Preface**

First Edition published in 2015

Second Edition published in 2021

For many years, almost all steel structures in Hong Kong were designed to the British structural steel design code, BS5950, and all steel materials were specified correspondingly to British steel materials specifications such as BS4360. However, as early as the 1990s, non-British steel materials found their way to Hong Kong as well as to Singapore and other neighbouring cities in Southeast Asia. Occasionally, there were projects when contractors would use non-British steel materials, such as American, Australian, Japanese and Chinese steel materials. The changes ranged from merely using these materials for some members of temporary structures to replacement of complete beam-column frames of building structures. Over the years, many successful projects in Hong Kong benefited from good quality non-British steel materials, timely supply and delivery as well as improved structural economy. However, there were also a few bad examples of the use of non-British steel materials with inconsistent chemical composition, inadequate mechanical properties and lack of traceability.

In the 2000s, owing to large fluctuations in the costs of steel materials in the global markets, Chinese steel materials became practical alternatives to British steel materials in a number of construction projects in Asia, in particular, in Hong Kong, Macau and Singapore. During the drafting of the "Code of Practice for the Structural Use of Steel" for the Buildings Department of the Government of Hong Kong SAR, i.e. Hong Kong Steel Code from February 2003 to August 2005, it was decided necessary to devise a means to allow, or more accurately, to formalize, the use of Chinese steel materials as equivalent steel materials for structures which were originally designed to BS5950. Various parts of Chapter 3 of the Hong Kong Steel Code provided basic principles and considerations for qualifying as well as accepting steel materials manufactured to the following national materials specifications:

- American standards,
- Australian / New Zealand standards,
- Chinese standards, and
- Japanese standards.

Moreover, a simple and practical classification system for non-British steel materials was also introduced in the Hong Kong Steel Code in which the design strengths of these steel materials depended on adequacy of materials specifications as well as effectiveness of quality control during their production.

A similar use of non-British steel materials was also formally adopted in Singapore with the issue of a technical guide entitled "Design Guide on Use of Alternative Steel Materials to BS5950" in 2008, and then its revised version entitled "Design Guide on Use of Alternative

Structural Steel to BS5950 and Eurocode 3" in 2012 by the Building and Construction Authority of the Ministry of National Development. These Design Guides aimed to provide technical guidelines and design information on the use of non-British steel materials, and the classification system on various steel materials given in the Code of Practice on the Structural Use of Steel was adopted after minor modification. Under the provisions of these Design Guides, alternative steel materials not manufactured to British and European steel materials standards may be allowed in structural design based on the Structural Eurocodes for construction projects in Singapore.

Shortly after its establishment in July 2010, the Hong Kong Constructional Metal Structures Association collaborated closely with the Macau Society of Metal Structures to explore various issues related to the equivalence of steel materials, and their impacts on construction projects in both Hong Kong and Macau. With the support of the Chinese National Engineering Research Centre for Steel Construction in Beijing, an Expert Panel on the Effective Use of Equivalent Steel Materials in Building Construction was established. A meeting of 12 steel experts from China, Hong Kong and Macau was held on 26 January 2011 at the Hong Kong Convention and Exhibition Centre in Wan Chai, Hong Kong to i) identify the needs of the local construction industry, ii) establish possible supply chains of equivalent steel materials, and iii) formulate recommendations for rectification. Consequently, an Expert Task Committee was established in March 2011 to collect technical information on both the chemical composition and mechanical properties of steel materials produced by European countries and the U.K., Australia, China, Japan, and the United States of America for comparative analysis.

By September 2011, a number of steel materials specifications from various countries had been selected for further consideration according to their mechanical properties: yield strengths, tensile to yield strength ratios, elongation limits, toughness and weldability. The findings were presented to the Chinese Iron and Steel Association and the Chinese Steel Construction Society in March 2012, and it was decided to expand the scope of the comparative analysis to cover steel materials under various delivery conditions as well as product forms. Moreover, a scientific and yet practical basis for gauging the equivalence of steel materials should be formulated. After a number of meetings of members of the Expert Task Committee as well as discussions and exchanges with experienced engineers and steel experts in Hong Kong, Macau and China, a draft of the Professional Guide entitled "Selection of Equivalent Steel Materials to European Steel Materials Specifications" was compiled in September 2013 for international consultation.

During the Pacific Structural Steel Conference 2013 held in Singapore from 9 to 11 October 2013, many experienced engineers and steel experts as well as technical representatives of national steel construction associations were invited to join the International Advisory

Committee of the Professional Guide. They provided valuable technical comments on the draft document as well as recommendations to the Expert Task Committee on the overall direction for further development of the Professional Guide. After receiving many favourable and constructive comments, the international consultation was concluded in April 2014, and the finalized version of the Professional Guide was compiled in July 2014 after incorporating all comments as appropriate.

Through the use of the Professional Guide, selected steel materials manufactured to modern materials specifications of Australia/New Zealand, China, Japan, and the United States of America are fully endorsed to be equivalent to those steel materials manufactured to European steel materials specifications including EN 10025, EN 10149, EN 10210 and EN 10219. Moreover, these equivalent steel materials must achieve full compliance with the requirements on material performance and quality assurance to EN 10025 as detailed in the Professional Guide. Consequently, these equivalent steel materials can be readily employed on construction projects in which structural steelwork is designed to Structural Eurocodes EN 1993 and EN 1994. Hence, the Professional Guide provides an international level playing field for Chinese steel materials enabling them to compete directly with those steel materials from other countries for overseas construction projects.

The Professional Guide is jointly published by the Hong Kong Constructional Metal Structures Association, the Macau Society of Metal Structures and the Chinese National Engineering Research Centre for Steel Construction. The support from the following organizations for the publication of this document is gratefully acknowledged:

- China Iron and Steel Association
- Construction Industry Council, Hong Kong SAR
- Civil Engineering Laboratory of Macau, Macau SAR
- Singapore Structural Steel Society, Singapore

This Professional Guide has been compiled under the close supervision and general management of an Expert Task Committee led by Professor K.F. Chung. Technical comments on the draft document as well as recommendations on the overall development of the Professional Guide were also received from members of the International Advisory Committee. Various drafts of the document have been reviewed by experienced engineers and steel experts in Hong Kong, Macau and China as well as members of the International Advisory Committee. Contributions from members of both the International Advisory Committee and the Expert Task Committee are gratefully acknowledged.

# **International Advisory Committee**

# • Mr. Jin-Dong CHI

Chinese Iron and Steel Association, Beijing, China

# • Mr. Yi LIU

Chinese Steel Construction Society, Beijing, China

#### • Mr. Zhao-Xin HOU

Chinese National Engineering Research Centre for Steel Construction, Beijing, China

# • Professor Yong-Jiu SHI

Tsinghua University, Beijing, China

# • Professor Yi-Yi CHEN

Tongji University, Shanghai, China

# • Professor Guo-Qiang LI

Tongji University, Shanghai, China

# • Professor Jing-Tao HAN

University of Science and Technology Beijing, Beijing, China

#### • Dr. Man-Chun TANG

T. Y. Lin International, U.S.A.

# • Dr. Robin Siu-Hung SHAM

AECOM Bridge Engineering, U.S.A. & Hong Kong SAR

# • Professor Reidar BJORHOVDE

American Society of Civil Engineers and American Institute of Steel Construction, U.S.A.

#### Professor David A NETHERCOT

Imperial College London, London, U.K.

#### Professor R. Mark LAWSON

The Steel Construction Institute, Ascots, U.K.

#### • Professor Eiki YAMAGUCHI

Kyushu Institute of Technology, Kyushu, Japan

#### Professor Brian UY

New South Wales University, Sydney, Australia

# • Dr. Stephen HICKS

Heavy Engineering Research Association, Auckland, New Zealand

#### Professor Riccardo ZANDONINI

University of Trento, Trento, Italy

# **International Advisory Committee (continued)**

#### Professor Richard Jat-Yuen LIEW

National University of Singapore, Singapore

#### Mr. Wan-Boon HO

Singapore Structural Steel Society, Singapore

#### • Mr. Anthony Kin-Wah TAN

Singapore Structural Steel Society, Singapore

#### • Er. Kaliannan THANABAL

Singapore Structural Steel Society, Singapore

#### • Mr. David Shiu-Yuen NG

Institution of Structural Engineers - Malaysia Division, and Institution of Engineers Malaysia, Kuala Lumpur, Malaysia

#### • Dr. Sai-Ping CHUI

Macau Society of Metal Structures, Macau SAR, China

# • Dr. Mun-Fong CHAN

Civil Engineering Consultants Co. Ltd., Macau SAR, China

#### • Dr. Peng-Kong AO

Civil Engineering Laboratory of Macau, Macau SAR, China

# • Ir Julian Chun-Fai LEE

Construction Industry Council, Hong Kong SAR, China

# • Dr. Michael, Chi-Ho YAM

Hong Kong Constructional Metal Structures Association, Hong Kong SAR, China

#### • Dr. Paul Heung-Fai LAM

Hong Kong Constructional Metal Structures Association, Hong Kong SAR, China

# Ir Kwok-Tung LEUNG

Architectural Services Department, the Government of Hong Kong SAR, China

#### • Ir Kai-Sing KWAN

Hong Kong Housing Department, the Government of Hong Kong SAR, China

#### • Ir Alan Hoi-Ngan YAU

AECOM Building Structures, Hong Kong SAR, China

#### • Mr. Kwong-Hung LAI

VSL Hong Kong Ltd., Hong Kong SAR, China

#### Dr. Ir Gary Siu-Kai CHOU

Chun Wo Construction and Engineering Co. Ltd., Hong Kong SAR, China

# **Expert Task Committee**

#### Professor Kwok-Fai CHUNG

Hong Kong Constructional Metal Structures Association,
Department of Civil and Environmental Engineering,
The Hong Kong Polytechnic University, Hong Kong SAR, China

# • Dr. Sing-Ping CHIEW

Division of Structures and Mechanics, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore

#### • Ir Hoi-Yuen LEE

Hong Kong Constructional Metal Structures Association, formerly, AECOM Building Structures, Hong Kong SAR, China

#### • Dr. Michael Chi-Ho YAM

Hong Kong Constructional Metal Structures Association,
Department of Building and Real Estate,
The Hong Kong Polytechnic University, Hong Kong SAR, China

#### • Mr. Zhao-Xin HOU

Chinese National Engineering Research Centre, Beijing, China

#### • Professor Yong-Jiu SHI

Tsinghua University, Beijing, China

# • Mr. Danny Hon-Yiu CHEUNG

Macau Society of Metal Structures, Macau SAR, China

# • Dr. Paul Heung-Fai LAM

Hong Kong Constructional Metal Structures Association, Department of Architecture and Civil Engineering, The City University of Hong Kong, Hong Kong SAR, China

#### • Ir Man-Kit LEUNG

Architectural Services Department, the Government of Hong Kong SAR, China

#### • Eng. Ken Wai-Kin CHOI

Structures and Buildings Department, Civil Engineering Laboratory of Macau, Macau SAR, China

# • Dr. Ho-Cheung HO

Hong Kong Constructional Metal Structures Association,
Department of Civil and Environmental Engineering,
The Hong Kong Polytechnic University, Hong Kong SAR, China

#### • Dr. Augus Chi-Chiu LAM

Department of Civil and Environmental Engineering University of Macau, Macau SAR, China

Technical comments from the following organizations are also received:

- ArcelorMittal Commercial Sections, Luxembourg
   Mr. Jean-Claude GERARDY
- Continental Steel PTE Ltd., Singapore
   Mr. Melvin SOH
- Nanjing Iron & Steel Co., Ltd., China

# Selection of Equivalent Steel Materials to European Steel Materials Specifications

# K F Chung, H C Ho and W Feng

**Professional Guide: PG-003** 

#### **Executive Summary**

This Professional Guide was prepared by Professor K.F. Chung, Dr. H.C. Ho and Ms. W. Feng of the Hong Kong Polytechnic University, Hong Kong. It is jointly published by the Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch), the Chinese National Engineering Research Centre for Steel Construction and the Hong Kong Constructional Metal Structures Association.

Owing to globalization, constructional steel materials find their way all over the world. It is an important part of the professional duties of structural engineers to specify steel materials according to various material specifications in accordance with the required material performance. Driven by the needs of improved cost effectiveness, steady supply and quality assurance of structural steelwork in construction projects, many engineers are confronted by the need to select steel materials from different sources which are rated as equivalent to European steel materials. Hence, it is necessary for design and construction engineers as well as engineers from regulatory authorities to seek technical guidance on the selection of equivalent steel materials. While such technical guidance is needed in many parts of the world, it is thought to be most urgently needed in a number of highly developed Asian countries and cities which are implementing huge infrastructure developments at present.

Through the use of this document, selected steel materials manufactured to the modern materials specifications of Australia/New Zealand, China, Japan, Russia, and the United States of America are fully endorsed as equivalent to those steel materials manufactured to European steel materials specifications, provided that all of these steel materials have been demonstrated to be in full compliance with the requirements for both material performance and quality assurance of European steel materials specifications as detailed in this document. Consequently, these equivalent steel materials will be readily employed on construction projects where the structural steelwork is designed to EN 1993 and EN 1994.

It should be noted that specific details relating to the following two essential requirements for equivalent steel materials are presented:

#### i) Material performance

- mechanical strength for structural adequacy,
- ductility for sustained resistances at large deformations,
- toughness in term of energy absorption against impact, and
- chemical composition and weldability to minimize risks of crack formation in welds.

#### ii) Quality assurance

- demonstrated compliance with acceptable steel materials specifications,
- demonstrated compliance with intensive routine testing with sufficient sampling

- on both chemical composition and mechanical properties, and
- effective implementation of certified quality assurance systems.

Depending on the adequacy of material performance and demonstration of quality assurance during their production, steel materials with yield strengths ranging from 235 to 690 N/mm<sup>2</sup> are classified into three different classes:

- i) Class E1 Steel Materials with a material class factor,  $\gamma_{Mc}$  equal to 1.0,
- ii) Class E2 Steel Materials with  $y_{Mc}$  equal to 1.1, and
- iii) Class E3 Steel Materials with limited use.

The material class factor  $\gamma_{Mc}$  should be taken into account when determining the nominal values of strength parameters of the equivalent steel materials in structural calculations.

In general, this Professional Guide presents various key aspects of the engineering metallurgy of steel materials in order to describe the effects of both mechanical working and heat treatments on the structural performance of steel materials. The effects of various chemical elements on various mechanical properties and physical performances of the steel materials are also discussed. An overview of a number of general criteria which influence the choice of steel materials together with basic considerations on various product forms is also given while the overall selection considerations for design and construction engineers are also described. The essential requirements for establishing the equivalence of steel materials to European steel materials specifications for a wide range of product forms with different delivery conditions, including for those various parts of EN 10025, EN 10149, EN 10210, EN 10219 and other sources, are tabulated for easy reference.

In order to help design and construction engineers in selecting suitable equivalent steel materials, detailed design data for these equivalent steel materials from various national materials specifications are tabulated. Strength parameters of these equivalent steel materials for various product forms with different steel grades and plate thicknesses are tabulated to allow direct adoption in structural design.

A comprehensive list of acceptable steel materials with different delivery conditions and product forms produced by various countries are also provided in Appendix A while the most updated materials specifications for structural steel materials are presented in Appendix B. The quality control practices adopted by regulatory authorities in a number of countries and cities in Asia are also briefly described in Appendix C. Moreover, a number of worked examples on acceptance of various steel materials are presented in Appendix D.

# **Contents**

| Forewo  | ord                                                                  | ii  |  |  |  |
|---------|----------------------------------------------------------------------|-----|--|--|--|
| Preface |                                                                      |     |  |  |  |
| Execut  | ve Summary                                                           | χiχ |  |  |  |
| Conter  | ts                                                                   | XX  |  |  |  |
|         |                                                                      |     |  |  |  |
| 1       | Introduction                                                         | 1   |  |  |  |
| 1.1     |                                                                      | 1   |  |  |  |
| 1.1     | Scope  Equivalent Steel Materials                                    | 1   |  |  |  |
| 1.3     | Equivalent Steel Materials  World Supply of Steel Materials          | 2   |  |  |  |
|         | World Supply of Steel Materials                                      |     |  |  |  |
| 1.4     | Use of Non-British Steel Materials in Hong Kong, Macau and Singapore | 5   |  |  |  |
| 1.5     | Essential requirements for Equivalent Steel Materials                | 6   |  |  |  |
| 1.6     | Design parameters                                                    | 7   |  |  |  |
| 1.7     | Overview                                                             | 8   |  |  |  |
| 2       | Factors de Martall, es es Charl Marta de la                          | 0   |  |  |  |
| 2       | Engineering Metallurgy of Steel Materials                            | 9   |  |  |  |
| 2.1     | Steelmaking Process                                                  | 10  |  |  |  |
| 2.2     | Basic Concepts of Microstructures in Carbon Steels                   | 12  |  |  |  |
| 2.2.1   | Definition of constituents in steel                                  | 12  |  |  |  |
| 2.2.2   | Iron-carbon phase diagram                                            | 15  |  |  |  |
| 2.2.3   | Transformation of phases throughout the cooling process              | 16  |  |  |  |
| 2.3     | Mechanical Working and Heat Treatments                               | 18  |  |  |  |
| 2.3.1   | Types of delivery conditions                                         | 18  |  |  |  |
| 2.3.2   | Metallurgical aspects of rolling and heat-treatments                 | 19  |  |  |  |
| 2.4     | Chemical Composition                                                 | 24  |  |  |  |
| 2.4.1   | Effects on mechanical and material performance                       | 24  |  |  |  |
| 2.4.2   | Effects on weldability                                               | 29  |  |  |  |
| 2.5     | Basic Material Properties of Steel Materials                         | 30  |  |  |  |
| 2.6     | Designation of Steel Grades                                          | 30  |  |  |  |
| 2       | Facility and a set Charal Makasish and The Colores                   | 2.1 |  |  |  |
| 3       | Equivalence of Steel Materials and Their Selection                   | 31  |  |  |  |
| 3.1     | Criteria Influencing Choice of Steel Materials                       | 31  |  |  |  |
| 3.1.1   | Basic considerations                                                 | 31  |  |  |  |
| 312     | Overall selection considerations                                     | 33  |  |  |  |

| 3.2      | Equivalency of Steel Materials                                              | 34    |
|----------|-----------------------------------------------------------------------------|-------|
| 3.2.1    | Selection principles                                                        | 35    |
| 3.2.2    | Classification of steel materials                                           | 37    |
| 3.2.3    | Additional material tests required for Class E2 Steel Materials             | 40    |
| 3.2.4    | Steel materials with yield strengths larger than 690 N/mm <sup>2</sup>      | 41    |
| 3.3      | Material Performance Requirements to European Steel Materials Specification | ıs 42 |
| 3.3.1    | Structural steels                                                           | 44    |
| 3.3.1.1  | Plates                                                                      | 44    |
| 3.3.1.2  | Sections                                                                    | 45    |
| 3.3.1.3  | Hollow sections                                                             | 46    |
| 3.3.1.4  | Sheet piles                                                                 | 47    |
| 3.3.1.5  | Solid bars                                                                  | 48    |
| 3.3.1.6  | Strips for cold formed open sections                                        | 49    |
| 3.3.1.7  | Strips for cold formed profiled sheetings                                   | 50    |
| 3.3.1.8  | Stud connectors                                                             | 51    |
| 3.3.1.9  | Non-preloaded bolted assemblies                                             | 52    |
| 3.3.1.10 | Preloaded bolted assemblies                                                 | 54    |
| 3.3.1.11 | Welding consumables                                                         | 56    |
| 3.4      | Quality Assurance Requirements to European Steel Materials Specifications   | 57    |
| 3.4.1    | Factory Production Control System                                           | 57    |
| 3.4.1.1  | Requirements for Factory Production Control System                          | 57    |
| 3.4.1.2  | Raw materials                                                               | 58    |
| 3.4.1.3  | Equipment                                                                   | 58    |
| 3.4.1.4  | Verifications and tests                                                     | 58    |
| 3.4.1.5  | Monitoring of conformity                                                    | 58    |
| 3.4.1.6  | Testing with direct and indirect methods                                    | 58    |
| 3.4.1.7  | Testing records                                                             | 59    |
| 3.4.1.8  | Treatment of products which do not conform                                  | 59    |
| 3.4.1.9  | Record of verifications and tests                                           | 59    |
| 3.4.1.10 | Traceability                                                                | 59    |
| 4        | Design Parameters of Equivalent Steel Materials                             | 60    |
| 4.1      | Product Forms of Equivalent Steel Materials                                 | 60    |
| 4.2      | Design Parameters on Class E1 Equivalent Steel Materials                    | 61    |
| 4.2.1    | Class E1 Structural steels                                                  | 61    |
| 4.2.2    | Class E1 Thin gauge strips                                                  | 67    |
| 4.2.3    | Class E1 Connection materials                                               | 70    |
| 4.2.3.1  | Class E1 Stud connectors                                                    | 70    |

| 4.2.3.2 | Class E1 Non-preloaded bolting assemblies     | 70 |
|---------|-----------------------------------------------|----|
| 4.2.3.3 | Class E1 Preloaded bolting assemblies         | 73 |
| 4.2.3.4 | Class E1 Welding consumables                  | 75 |
| 4.3     | Design Parameters on Class E2 Steel Materials | 77 |
| 4.3.1   | Class E2 Structural steels                    | 77 |
| 4.3.2   | Class E2 Thin gauge strips                    | 77 |
| 4.3.3   | Class E2 Connection materials                 | 78 |
| 4.3.3.1 | Class E2 Stud connectors                      | 78 |
| 4.3.3.2 | Class E2 Non-preloaded bolting connections    | 78 |
| 4.3.3.3 | Class E2 Preloaded bolting connections        | 79 |
| 4.3.3.4 | Class E2 Welding consumables                  | 79 |
| 4.4     | Design Parameters on Class E3 Steel Materials | 80 |
| 4.4.1   | Class E3 Structural steels                    | 80 |
| Doforon | cos                                           | 01 |
| Referen | les                                           | 81 |
| Appendi | ices                                          | 83 |

| 1 | ist | ٥f  | ta | h | عما |
|---|-----|-----|----|---|-----|
| L | ISL | OI. | La | u |     |

| Table 1.1  | Annual crude steel production (mmt) of various countries of interest since 1980                   | 3  |
|------------|---------------------------------------------------------------------------------------------------|----|
| Table 1.2  | Major steel producing countries in 2013                                                           | 4  |
| Table 2.1  | Typical functions of chemical elements in structural carbon steels                                | 13 |
| Table 2.2  | Significations of critical points in iron-carbon phase diagram                                    | 15 |
| Table 2.3  | Typical microstructures of steels and their morphologies in cooling conditions                    | 22 |
| Table 2.4  | Typical functions of chemical elements in structural carbon steels                                | 28 |
| Table 3.1  | Classification system of various classes of steel materials                                       | 39 |
| Table 3.2  | Additional material tests required for demonstration of conformity                                | 40 |
| Table 3.3  | Product forms                                                                                     | 42 |
| Table MR1  | Material requirements for plates                                                                  | 44 |
| Table MR2  | Material requirements for sections                                                                | 45 |
| Table MR3  | Material requirements for hollow sections                                                         | 46 |
| Table MR4  | Material requirements for sheet piles                                                             | 47 |
| Table MR5  | Material requirements for solid bars                                                              | 48 |
| Table MR6  | Material requirements for cold formed open sections                                               | 49 |
| Table MR7  | Material requirements for cold formed profiled sheetings                                          | 50 |
| Table MR8  | Material requirements for stud connectors                                                         | 51 |
| Table MR9  | Material requirements for non-preloaded bolted assembles                                          | 52 |
| Table MR10 | Material requirements for preloaded bolted assembles                                              | 54 |
| Table MR11 | Material requirements for welding consumables                                                     | 56 |
| Table 4.1  | Product forms of various classes of equivalent steel materials                                    | 60 |
| Table 4.2a | Design parameters of Structural steels to European (EN) specifications                            | 61 |
| Table 4.2b | Design parameters of Class E1 Structural steels to American (ASTM and API) specifications         | 62 |
| Table 4.2c | Design parameters of Class E1 Structural steels to Japanese (JIS) specifications                  | 63 |
| Table 4.2d | Design parameters of Class E1 Structural steels to Australian/New Zealand (AS/NZS) specifications | 64 |
| Table 4.2e | Design parameters of Class E1 Structural steels to Chinese (GB) specifications                    | 65 |
| Table 4.2f | Design parameters of Class E1 Structural steels to Russian(GOST) specifications                   | 66 |
| Table 4.3a | Design parameters of Thin gauge strips to European (EN) specifications                            | 67 |

| Table 4.3b | Design parameters of Class E1 Thin gauge strips to American (ASTM) specifications                                                                                            | 67 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4.3c | Design parameters of Class E1 Thin gauge strips to Japanese (JIS) specifications                                                                                             | 67 |
| Table 4.3d | Design parameters of Class E1 Thin gauge strips to Australian/New Zealand (AS/NZS) specifications                                                                            | 68 |
| Table 4.3e | Design parameters of Class E1 Thin gauge strips to Chinese (GB) specifications                                                                                               | 68 |
| Table 4.3f | Design parameters of Class E1 Thin gauge strips to Russian(GOST) specifications                                                                                              | 69 |
| Table 4.4  | Design parameters Class E1 Stud connectors to European (EN), American (AWS), Japanese (JIS), Australian/New Zealand (AS/NZS), Chinese (GB) and Russian (GOST) specifications | 70 |
| Table 4.5a | Design parameters of non-preloaded bolts to European (EN) specifications                                                                                                     | 70 |
| Table 4.5b | Design parameters of Class E1 non-preloaded bolts to American (ASTM) specifications                                                                                          | 71 |
| Table 4.5c | Design parameters of Class E1 non-preloaded bolts to Japanese (JIS) specifications                                                                                           | 71 |
| Table 4.5d | Design parameters of Class E1 non-preloaded bolts to Australian/New Zealand (AS) specifications                                                                              | 71 |
| Table 4.5e | Design parameters of Class E1 non-preloaded bolts to Chinese (GB) specifications                                                                                             | 71 |
| Table 4.5f | Design parameters of Class E1 non-preloaded bolts to Russian (GOST) specifications                                                                                           | 72 |
| Table 4.6a | Design parameters of preloaded bolts to European (EN) specifications                                                                                                         | 73 |
| Table 4.6b | Design parameters of Class E1 non-preloaded bolts to American (ASTM) specifications                                                                                          | 73 |
| Table 4.6c | Design parameters of Class E1 preloaded bolts to Japanese (JIS) specifications                                                                                               | 73 |
| Table 4.6d | Design parameters of Class E1 preloaded bolts to Australian/New Zealand (AS) specifications                                                                                  | 74 |
| Table 4.6e | Design parameters of Class E1 preloaded bolts to Chinese (GB) specifications                                                                                                 | 74 |
| Table 4.6f | Design parameters of Class E1 Preloaded bolts to Russian (GOST) specifications                                                                                               | 74 |
| Table 4.7a | Design parameters of welds made of European (EN) specifications                                                                                                              | 75 |
| Table 4.7b | Design parameters of Class E1 welds made of American (AWS)                                                                                                                   | 75 |

|            | specifications                                                                         |    |
|------------|----------------------------------------------------------------------------------------|----|
| Table 4.7c | Design parameters of Class E1 welds made of Japanese (JIS) specifications              | 75 |
| Table 4.7d | Design parameters of Class E1 welds made of Australian/New Zealand (AS) specifications | 75 |
| Table 4.7e | Design parameters of Class E1 welds made of Chinese (GB) specifications                | 76 |
| Table 4.7f | Design parameters of Class E1 Welds made of Russian (GOST) welding consumables         | 76 |
| Table 4.8  | Design parameters of Class E2 Structural steels                                        | 77 |
| Table 4.9  | Design parameters of Class E3 Structural steels                                        | 80 |

# List of figures

| Figure 1.1 | Annual crude steel production proportions of five countries of interest in 2013  | 4  |
|------------|----------------------------------------------------------------------------------|----|
| Figure 2.1 | A diagrammatic presentation of steelmaking processes                             | 11 |
| Figure 2.2 | Principle crystal types and photomicrographs of microstructures in carbon steels | 14 |
| Figure 2.3 | Iron-carbon phase diagram                                                        | 15 |
| Figure 2.4 | Iron-carbon phase diagram of hypoeutectoid steel                                 | 17 |
| Figure 2.5 | Comparison between various delivery conditions                                   | 19 |
| Figure 2.6 | Schematic illustration of change in microstructure during hot rolling            | 20 |
| Figure 2.7 | Schematic representation of recovery, recrystallization and grain growth         | 21 |
| Figure 2.8 | Designation of steel grade according to EN 10027-1                               | 30 |

#### Section 1 Introduction

#### 1.1 Scope

This document presents essential technical guidance to design and construction engineers as well as engineers from regulatory authorities on the selection of equivalent steel materials conforming to European steel materials specifications.

It also gives essential requirements for the equivalence of steel materials in respect of both material performance and quality assurance for all steel materials which are intended to accord with European structural steel design codes.

# 1.2 Equivalent Steel Materials

Equivalent steel materials are steel materials not manufactured to European steel materials specifications, and therefore not covered in EN1 993 and EN 1994 by default.

Owing to globalization, constructional steel materials find their way all over the world. It is an important part of the professional duties of structural engineers to specify steel materials according to various material specifications in accordance with the required material performance levels explicitly as well as those implicitly assumed in design codes. Driven by improved cost effectiveness, steady supply of structural steelwork, and assured material quality in construction projects, many engineers are often confronted by the need to select steel materials from different sources which are equivalent to European steel materials. Hence, it is necessary for design and construction engineers as well as engineers from regulatory authorities to seek technical guidance on the selection of equivalent steel materials. While such technical guidance is needed in many parts of the world, it is considered to be most urgently needed in a number of highly developed Asian countries and cities which are implementing huge infrastructure developments at present.

While the basic principles of equivalence are presented Chapter 3, it should be noted that owing to many differences and discrepancies in both the chemical composition and the material performance of steel materials, the equivalence of steel materials manufactured to different national materials specifications should not be taken for granted. Nevertheless, this document covers many of the steel materials manufactured by the following six countries of interest:

- a) United States of America,
- b) Japan,
- c) Australia / New Zealand,
- d) China, and
- e) Russian.

These equivalent steel materials can be readily employed on construction projects in which the structural steelwork is designed to EN 1993 and EN 1994.

#### 1.3 World Supply of Steel Materials

Steel materials are international commodities which are commonly shipped thousands of miles from where they were manufactured to wherever there is a market. The World Steel Association (<a href="www.worldsteel.org">www.worldsteel.org</a>) is one of the largest industry associations in the world. It represents approximately 85% of global steel production including steel producers, national and regional steel industry associations, and steel research institutes. Based on the statistics archive of the World Steel Association, Table 1.1 presents the annual crude steel production of Australia, China, Japan, the United Kingdom, the United States of America, and Russia from 1980 to 2021 together with total world production.

It is shown that Australia, Japan, the U.K., the U.S.A., and Russia tend to maintain their annual crude steel production tonnages at a broadly constant level with minimal growth as a whole.

However, owing to the rapid development of the iron and steel industry in China since the 1980's, the steel production capacity increased markedly over the last 30 years. It should be noted that as a large number of steel mills in many parts of China upgraded their production facilities and commissioned new production plants, the annual crude steel production of China increased steadily from 37.1 mmt (million metric tons) in 1980 to 1064.7 mmt in 2020, i.e. an increase of approximately 28.7 over a period of 40 years. Its annual crude steel production exceeded 100 mmt in 1996, 200 mmt in 2003, 500 mmt in 2008, and then 1000 mmt in 2020. Over 45 % of the steel materials in the world have been produced in China since 2010.

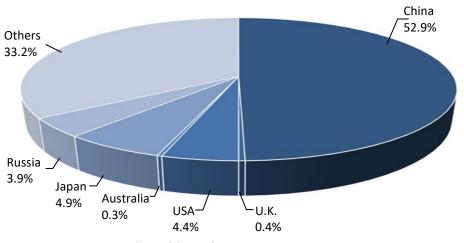
According to recent statistical data of the World Steel Association, the major steel-producing countries in the world in 2021 are presented in Table 1.2. It should be noted that the annual steel production of China reached 1032.8 mmt, accounting for 52.9% of world production. Hence, it is important for design and construction engineers in Asia to be able to take advantages of the huge supply of Chinese steel materials.

Table 1.1 Annual crude steel production (mmt) of various countries of interest since 1980

| Year | Australia | China | Japan | U.K. | U.S.A. | Russia | World<br>production |
|------|-----------|-------|-------|------|--------|--------|---------------------|
| 1980 | 7.6       | 37.1  | 111.4 | 11.3 | 101.5  | _      | 568.5               |
| 1981 | 7.6       | 35.6  | 101.7 | 15.6 | 109.6  | _      | 558.7               |
| 1982 | 6.4       | 37.2  | 99.5  | 13.7 | 67.7   | _      | 498.4               |
| 1983 | 5.7       | 40.0  | 97.2  | 15.0 | 76.8   | _      | 511.2               |
| 1984 | 6.3       | 43.5  | 105.6 | 15.1 | 83.9   | _      | 556.0               |
| 1985 | 6.6       | 46.8  | 105.3 | 15.7 | 80.1   | _      | 564.2               |
| 1986 | 6.7       | 52.2  | 98.3  | 14.7 | 74.0   | _      | 553.4               |
| 1987 | 6.1       | 56.3  | 98.5  | 17.4 | 80.9   | _      | 573.6               |
| 1988 | 6.4       | 59.0  | 105.7 | 19.0 | 90.7   | _      | 617.1               |
| 1989 | 6.7       | 61.6  | 108.0 | 18.7 | 88.9   | _      | 625.8               |
| 1990 | 6.7       | 66.4  | 110.3 | 17.8 | 89.7   | _      | 616.0               |
| 1991 | 6.1       | 71.0  | 109.6 | 16.5 | 79.7   | _      | 600.8               |
| 1992 | 6.8       | 80.9  | 98.1  | 16.2 | 84.3   | 67.0   | 719.8               |
| 1993 | 7.9       | 89.6  | 99.6  | 16.6 | 88.8   | 58.3   | 727.6               |
| 1994 | 8.4       | 92.6  | 98.3  | 17.3 | 91.2   | 48.8   | 725.1               |
| 1995 | 8.5       | 95.4  | 101.6 | 17.6 | 95.2   | 51.6   | 752.3               |
| 1996 | 8.4       | 101.2 | 98.8  | 18.0 | 95.5   | 49.2   | 750.1               |
| 1997 | 8.8       | 108.9 | 104.5 | 18.5 | 98.5   | 48.5   | 799.0               |
| 1998 | 8.9       | 114.6 | 93.5  | 17.3 | 98.7   | 43.8   | 777.3               |
| 1999 | 8.2       | 124.0 | 94.2  | 16.3 | 97.4   | 51.5   | 789.0               |
| 2000 | 7.1       | 128.5 | 106.4 | 15.2 | 101.8  | 59.1   | 848.9               |
| 2001 | 7.0       | 151.6 | 102.9 | 13.5 | 90.1   | 59.0   | 851.1               |
| 2002 | 7.5       | 182.4 | 107.7 | 11.7 | 91.6   | 59.8   | 904.2               |
| 2003 | 7.5       | 222.3 | 110.5 | 13.3 | 93.7   | 61.5   | 969.9               |
| 2004 | 7.4       | 282.9 | 112.7 | 13.8 | 99.7   | 65.6   | 1071.5              |
| 2005 | 7.8       | 353.2 | 112.5 | 13.2 | 94.9   | 66.1   | 1144.1              |
| 2006 | 7.9       | 419.1 | 116.2 | 13.9 | 98.6   | 70.8   | 1247.2              |
| 2007 | 7.9       | 489.3 | 120.2 | 14.3 | 98.1   | 72.4   | 1346.1              |
| 2008 | 7.6       | 500.3 | 118.7 | 13.5 | 91.4   | 68.5   | 1329.0              |
| 2009 | 5.2       | 567.8 | 87.5  | 10.1 | 58.2   | 60.0   | 1224.0              |
| 2010 | 7.3       | 638.7 | 109.6 | 9.7  | 80.5   | 66.9   | 1435.3              |
| 2011 | 6.4       | 702.0 | 107.6 | 9.5  | 86.4   | 68.9   | 1539.9              |
| 2012 | 4.9       | 731.0 | 107.2 | 9.6  | 88.7   | 70.2   | 1562.3              |
| 2013 | 4.7       | 822.0 | 110.6 | 11.9 | 86.9   | 69.0   | 1652.3              |
| 2014 | 4.6       | 822.3 | 110.7 | 12.0 | 88.2   | 71.5   | 1674.0              |
| 2015 | 4.9       | 803.8 | 105.1 | 10.9 | 78.8   | 70.9   | 1625.1              |
| 2016 | 5.3       | 807.6 | 104.8 | 7.6  | 78.5   | 70.5   | 1632.8              |
| 2017 | 5.3       | 870.9 | 104.7 | 7.5  | 81.6   | 71.5   | 1735.9              |

(To be continued)

(Continued)


| Year | Australia | China  | Japan | U.K. | U.S.A. | Russia | World<br>production |
|------|-----------|--------|-------|------|--------|--------|---------------------|
| 2018 | 5.7       | 929.0  | 104.3 | 7.3  | 86.6   | 72.1   | 1826.6              |
| 2019 | 5.5       | 995.4  | 99.3  | 7.2  | 87.8   | 71.7   | 1875.3              |
| 2020 | 5.5       | 1064.7 | 83.2  | 7.1  | 72.7   | 71.6   | 1880.4              |
| 2021 | 5.8       | 1032.8 | 96.3  | 7.2  | 85.8   | 75.6   | 1951.9              |

Note: mmt denotes million metric tons.

Table 1.2 Major steel producing countries in 2021

| Ranking                       | Country       | Annual crude steel Production | Proportion |      |
|-------------------------------|---------------|-------------------------------|------------|------|
|                               |               | (mmt)                         | (%)        |      |
| 1                             | China         | 1032.8                        | 52.9%      |      |
| 2                             | India         | 118.2                         | 6.1%       |      |
| 3                             | Japan         | 96.3                          | 4.9%       |      |
| 4                             | United States | 85.8                          | 4.4%       |      |
| 5                             | Russia        | 75.6                          | 3.9%       | 02.2 |
| 6                             | South Korea   | 70.4                          | 3.6%       | 83.2 |
| 7                             | Turkey        | 40.4                          | 2.1%       |      |
| 8                             | Germany       | 40.1                          | 2.1%       |      |
| 9                             | Brazil        | 36.2                          | 1.9%       |      |
| 10                            | Iran          | 28.5                          | 1.5%       |      |
| Total production in the world |               | 1951.9                        | _          |      |

Moreover, Figure 1.1 illustrates the proportions of the annual steel production of the five countries of interest in 2021.



Total world production is 1951.9 mmt

Figure 1.1 Annual crude steel production proportions of six countries of interest in 2021

#### 1.4 Use of Non-British Steel Materials in Hong Kong, Macau and Singapore

For many years, almost all steel structures in Hong Kong were designed to the British structural steel design code, BS5950, and all the steel materials were specified correspondingly to the British steel materials specifications such as BS4360. However, as early as the 1990s, non-British steel materials found their way to Hong Kong as well as to neighbouring cities in Southeast Asia. Occasionally, there were projects on which contractors would like to use non-British steel materials, such as Japanese, Australian and Chinese steel materials. The proposed changes ranged from merely adopting these steel materials for some members of temporary structures, to the replacement of complete beam-column frames of building structures. Over the years, many successful projects were reported in Hong Kong which benefited from good quality non-British steel materials, timely supply and delivery as well as improved structural economy. However, a few bad examples of using non-British steel materials also occurred with inconsistent chemical composition, inadequate mechanical properties and a lack of traceability.

In the 2000s, owing to large fluctuations in the costs of steel materials in the global markets, Chinese steel materials became practical alternatives to British steel materials on a number of construction projects in Asia, in particular, in Hong Kong, Macau and Singapore. During the drafting of the Code of Practice for the Structural Use of Steel for the Buildings Department of the Government of Hong Kong SAR, i.e. Hong Kong Steel Code, from February 2003 to August 2005, it was decided necessary to devise a means to allow, or more accurately, to formalize the use of Chinese steel materials as equivalent steel materials for structures which were originally designed to BS5950. Various parts of Chapter 3 of the Hong Kong Steel Code provide basic principles and considerations for qualifying and accepting steel materials manufactured to the following national materials specifications:

- American standards,
- Japanese standards,
- Australian / New Zealand standards,
- Chinese standards, and
- Russian standards.

As endorsed by the Buildings Department of the Government of Hong Kong SAR, the following classification system for non-British steel materials was introduced in the Hong Kong Steel Code in which the design strengths of these non-British steel materials depend on a material factor,  $\gamma$ , which is taken to be:

a) 1.0 when the steel materials are demonstrated to i) comply with one of the reference materials specifications listed in the Hong Kong Steel Code, ii) satisfy various material requirements, and iii) be produced by a manufacturer with an acceptable Quality Assurance system; this is a Class 1 steel material and no additional material tests are required before use. b) 1.1 when the steel materials are demonstrated to be not manufactured to one of the reference materials specifications listed in the Hong Kong Steel Code, but are produced by a manufacturer with an acceptable Quality Assurance system; these are Class 2 steel materials. It should be noted that these steel materials should be tested systematically according to specific sampling rates before use in order to demonstrate compliance with the relevant reference materials specifications.

The Hong Kong Steel Code became mandatory in August 2005, and the material classification system of non-British steel materials became widely adopted in Hong Kong, Macau and other Asian countries. The Code was revised in 2011 to cover more product forms.

In 2008, the local regulatory agent in Singapore, namely, the Building and Construction Authority of the Ministry of National Development, published a technical guide entitled "Design Guide on Use of Alternative Steel Materials to BS5950". This Design Guide aimed to provide technical guidelines and design information on the use of non-British steel materials, and the classification system for various steel materials given in the Hong Kong Steel Code was adopted after modification. Under the provisions of this Design Guide, alternative steel materials not manufactured specifically to British Standards may be allowed for structural design based on BS5950 for construction projects in Singapore.

Moreover, in order to establish quality control, this Design Guide outlines both the material performance and the quality assurance requirements to be imposed on all steel materials, including those manufactured to British Standards, which are proposed for use in accordance with BS5950 in the context of Singapore. Design strengths of various acceptable non-British steel materials were tabulated for practical design. It should be noted that in 2012, the document was revised and re-titled as "Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3".

It is considered necessary to provide comprehensive guidance on the use of equivalent steel materials to design and construction engineers as well as engineers in regulatory bodies worldwide. This facilitates equivalent steel materials to be readily employed on construction projects in which the structural steelwork is designed to EN 1993 and EN1994.

# 1.5 Essential Requirements for Equivalent Steel Materials

The use of equivalent steel materials depends solely on their classification which is determined in accordance with their demonstrated compliance to the essential requirements on both material performance and quality assurance:

# a) Material performance

Meeting material performance requirements of relevant European steel materials specifications is essential with respect to the dimensional, mechanical, physical and other relevant properties of equivalent steel materials to ensure their adequacy for use with structural design based on EN 1993 and EN 1994.

#### b) Quality assurance requirements

It is also essential for manufacturers of equivalent steel materials to demonstrate effective implementation of appropriate quality assurance during their manufacturing process as stipulated in relevant European steel materials specifications to ensure their reliability for use with structural design based on EN 1993 and EN 1994.

# 1.6 Design Parameters

All the key parameters in this document are defined as follows:

```
R_{eH}
        Minimum yield strength
        0.2% proof strength
R_{p0.2}
                                         in accordance with EN 10025-1
        Tensile strength
R_{m}
        Minimum elongation at fracture
Α
       f_v
fu
        Material class factor
\gamma_{MC}
        Ultimate strain corresponding to fu
\epsilon_{\text{u}}
        Strain at fracture (which is taken as the same value of the minimum elongation, A,
\epsilon_{\text{f}}
        shown above)
```

It should be noted that in EN 1993-1-1, the following definitions of key parameters are adopted:

- Nominal value of yield strength,  $f_y$  $f_y = R_{eH}$  (Clause 3.2.1)
- Nominal value of ultimate tensile strength,  $f_u$  $f_u = R_m$  (Clause 3.2.1)
- Design strength =  $f_y / \gamma_M$

where  $\gamma_M$  is the partial factor of safety, and its value depends on the type of failure under consideration according to Clause 6.1.

It should be noted that there is no symbol for design strength, and  $f_y / \gamma_M$  is used instead.

With the introduction of the material class factor,  $\gamma_{MC}$ , for the use of equivalent steel materials as fully illustrated in Section 3.2 of this document, the following equations should be adopted:

Nominal value of yield strength, f<sub>y</sub>

$$f_v = R_{eH} / \gamma_{MC}$$

• Nominal value of ultimate tensile strength, fu

$$f_u = R_m / \gamma_{MC}$$

• Design strength =  $f_v / \gamma_M$ 

where  $\gamma_M$  is the partial factor of safety, and its value depends on the type of failure under consideration according to Clause 6.1 of EN 1993-1-1.

#### 1.7 Overview

An overview of the chapters of this document is as follows:

Chapter 2 presents various key aspects of the engineering metallurgy of steel materials in order to describe the effects of both mechanical working and heat treatments on the structural performance of steel materials. The effects of various chemical elements on the mechanical and other types of performance of the steel materials are also discussed.

Chapter 3 discusses a number of general criteria which influence the choice of steel materials together with basic considerations on various product forms, and the overall selection considerations for design and construction engineers are also described. The essential considerations behind the selection principles for establishing equivalence of steel materials to European steel materials specifications for a wide range of product forms with different delivery conditions are also presented. Depending on the adequacy of material performance and demonstration of quality assurance during manufacturing processes, equivalent steel materials are classified into three different material classes, namely, Classes E1, E2 and E3 Steel materials. Moreover, materials requirements given in various parts of EN 10025, EN 10149, EN 10210 and EN 10219 as well as in other sources are summarized in tabulated format, and these are presented systematically in Tables MR1 to MR11 for easy reference. Details of a quality assurance system given in EN 10025 are also discussed.

Chapter 4 describes the classification of equivalent steel materials, and presents design data for those steel materials which have been demonstrated to meet the essential requirements on material performance and quality assurance for equivalence of steel materials as detailed in Chapter 3. Design parameters of these equivalent steel materials of various product forms with different steel grades and plate thicknesses are also tabulated in Tables 4.2 to 4.11 to allow direct adoption for the design of structural steelwork in accordance with European steel materials specifications.

A comprehensive list of acceptable steel materials with different delivery conditions and product forms produced by various countries are also provided in Appendix A while the most updated materials specifications for structural steel materials are presented in Appendix B. The quality control practices adopted by regulatory authorities in a number of countries and cities in Asia are also briefly described in Appendix C. Moreover, a total of seven worked examples on selection of equivalent steel materials are provided in Appendix D.

# Section 2 Engineering Metallurgy of Steel Materials

Engineers should process some knowledge on the metallurgy of carbon steels, the most commonly used constructional steel materials. This Chapter presents key aspects of the engineering metallurgy of steel materials, and describes and relates the effects of both mechanical working and heat treatments on the structural performance of these steel materials.

It should be noted that the mechanical properties of the steel materials depend primarily on the following:

### Mechanical working and heat treatments

Mechanical working and heat treatments involve controlled heating and cooling of steel materials under mechanical rolling to change their physical and mechanical properties under specific pre-assigned chemical compositions. It is well known that the mechanical properties of the steel materials depend strongly on their microstructures obtained throughout the heat treatment and the subsequent cold working processes, which are so formed as to achieve good hardened steel materials with high strengths and high ductility.

# Chemical compositions

Structural steels are a mixture of iron and carbon with varying amounts of Manganese, Phosphorus, Sulphur, and Silicon. These and many other elements are either unavoidably present or intentionally added in various combinations to achieve specific characteristics and properties of the finished products. It should be noted that the chemical compositions of the steel materials are fundamental to their mechanical properties. The effects of various chemical elements on the mechanical properties as well as the material performances of the steel materials are summarized below in Section 2.4.

Further details on these important topics are presented in the following sections.

# 2.1 Steelmaking Process

Steelmaking is to produce steel from iron-rich raw materials. The modern steelmaking process consists of the following two stages, and the entire process is sketched out in a flow diagram as shown in Figure 2.1.

# · Primary steelmaking

There are two main types of steelmaking furnaces in this process. One is a basic oxygen furnace, in which molten pig iron from a blast furnace and steel scrap are rapidly converted into steel with desired carbon content and temperature. The energy for converting materials is provided by the oxidation of Carbon (C), Silicon (Si), Manganese (Mn), Phosphorus (P) and Iron. When the oxygen lance blows high-purity oxygen over the metal mixture, Carbon inside the furnace forms carbon dioxide in form of gas bubbles. Meanwhile, other impurities are oxidized to form slags by adding slag-making materials like lime, quartz and fluorite. This is regarded as an impurity removal process.

The other is an electric arc furnace, in which the particularly sorted scrap steel and/or the direct reduced iron (DRI) are/is melted by electric arcs to produce steel with more desirable quality under a more accurate temperature. Heat is mainly supplemented by the electric resistance of the metal and radiation of the electrical arc itself. Compared with steelmaking in basic oxygen furnaces, that in electric furnaces the temperature is more accurate and the oxidation process is easier to control, which can avoid oxidizing useful alloying elements. Therefore, an electric arc furnace is normally used for alloy steel, high-quality steel and some special steel.

# Secondary steelmaking

After tapping of steel from a primary steelmaking process, the molten steel is refined for improved quality by ladle metallurgy, and then, continuously cast into a pre-designed shape, commonly known as the secondary steelmaking process or ladle metallurgy.

Secondary steelmaking is normally performed in ladles, which are used for holding and transporting liquid steel. In a ladle furnace, liquid steel is reheated through electric power conducted by graphite electrodes. With an inert gas purging through a purge plug, generated gas bubbles continuously transfer the impure gases and inclusions of molten steel into the top slag layer. Another function of purging inert gas is stirring the molten steel to promote homogenization. Slagging and alloy elements adjusting are also performed in this period.

A vacuum degasser is a tank that can contain the ladle furnace. The main function of a vacuum degasser is removing residual gases( $N_2, H_2, O_2$ ), especially Hydrogen. During operations at the vacuum degasser, the liquid steel is stirred to promote homogenization by percolating argon gas through a single refractory stir plug arrangement in the bottom of the ladle. The bath agitation under a vacuum is also helpful for the further removal of inclusions. The next process is wire feeding, in order to remove residual  $O_2$  and Sulphur in the liquid steel, finely adjusting the composition and changing form of inclusions. By adopting those operations, including de-oxidation reaction, vacuum degassing, alloy

addition, removal or chemistry modification of inclusions, and homogenization, the quality of steel products is tightly controlled.

Subsequently, the ladle with molten steel is transferred to ladle turret preparing to continuously cast via tundish. In modern steelmaking, the continuous casting has almost replaced the conventional casting that is interrupted pouring ingots in moulds. On the mechanization production line, the molten steel is continuously distributed into a series of moulds. The inside dimension of each hollow mould is consistent with the predetermined section. The casting metal then moves through a set of rollers under water spray for full solidification, and be cut to size by flame-cutting torches or mechanical shearing in the form of bloom, billet, or slab. It usually needs a precisely controlled rolling and a reheated process for end uses, which will be described later in this chapter.

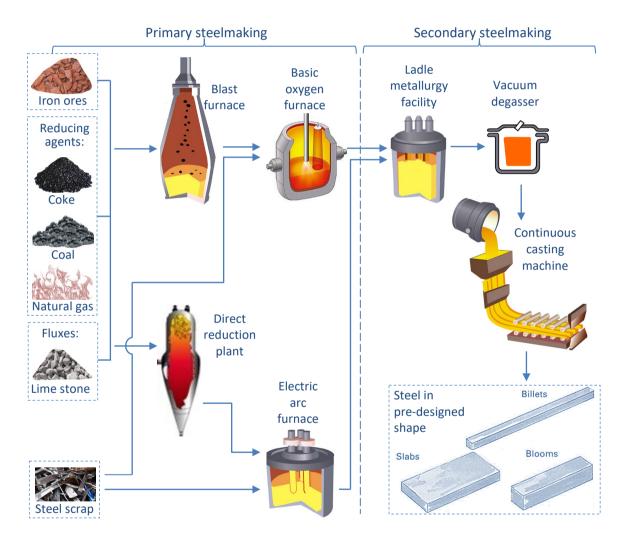



Figure 2.1 A diagrammatic presentation of steelmaking processes

# 2.2 Basic Concepts of Microstructures in Carbon Steels

Metals are crystalline in nature. Constituents in steel mainly exist as phases, or as aggregates, i.e., assemblages of phases. To introduce properties of primarily existed constituents, the effects of manganese and other alloy elements are neglected.

#### 2.2.1 Definition of constituents in steel

Different kinds of microstructures make different contributions to mechanical properties of carbon steels. Carbon contents and qualitative effects of several key microstructural phases are indicated in Table 2.1. Meanwhile, their definitions and appearance are described as follows:

#### a) Austenite

Austenite is a solid solution dissolving carbon in face-centred cubic iron that contains up to a maximum content of 2.14% carbon, also known as the gamma-phase iron ( $\gamma$ -Fe). It is ductile and soft with a certain tensile strength in the high-temperature zone. The microscopic appearance of austenite is always large-grained, as shown in Figure 2.2a.

# b) Ferrite

Ferrite is a solid solution of quite limited carbon solubility in body-centred cubic crystal structure consisting of at most 0.022% carbon, also known as the alpha-phase iron ( $\alpha$ -Fe). Like the pure iron, ferrite is very ductile and soft with a low tensile strength. The ferrite microgram shown in Figure 2.2b is polyhedral gains.

#### c) Cementite

Cementite, or iron carbide with the chemical formula Fe<sub>3</sub>C, is an intermetallic compound of iron and carbon. As a relatively high-carbon steel that contains 6.67% carbon, cementite is very hard and brittle. As shown in the micrograph of Figure 2.2c, it appears as a brilliant white network or needle-like around pearlite in slow cooling.

#### d) Pearlite

Pearlite is an aggregate of ferrite and cementite, which is an intimate mixture resulted from the eutectoid reaction when austenite of 0.76% carbon is slowly cooled below 727°C (the eutectoid temperature). As the two phases are alternatively arranged and uniformly distributed in the lamellar microstructure of pearlite (see Figure 2.2d), pearlite exerts the maximum hardening power with relatively good ductility and high strength.

#### e) Martensite

Martensite is an interstitial supersaturated solid solution of carbon with a highly strained body-centred tetragonal lattice. It is formed by the rapid cooling of austenite, also called

quenching. The cooling rate is too high to let carbon atoms diffuse out of the crystal structure to form cementite. Martensite is the hardest transformation product of austenite, having lath shaped (C%<0.6%) and lenticular shaped (C%>1%) crystal grains (see Figure 2.2e), or a mix of the two shapes (0.6<C%<1%) .

Since martensite is a metastable phase of steel, it is usually reheated to relieve cooling stresses and minimize cracking, and to obtain a stable microstructure of the so-called tempered martensite (see Figure 2.2g).

# f) Bainite

In addition to pearlite and martensite, bainite is another micro-constituent resulted from the decomposition of austenite. It forms in a moderate cooling rate that is faster to suppress the transformation from austenitic to ferrite and pearlite, but not fast enough to form martensite. In consequence, bainite is both harder and tougher than pearlite, but not so hard as martensite. Figure 2.2f shows the microstructural appearance as featherlike and acicular respectively for so-called "upper bainite" and "lower bainite", according to the temperature range of the transformation.

Table 2.1 Influence of microstructural constituents on properties of steels

| Constituents           | Carbon content<br>(wt%) | Tensile strength | Ductility  | Toughness  | Hardness    | Weldability    | Anti-<br>corrosion |
|------------------------|-------------------------|------------------|------------|------------|-------------|----------------|--------------------|
| Austenite              | Max 2.140               | <b>↓</b>         | <b>↑</b>   | 1          | <b>↓</b>    | <b>↓</b>       | <b>↑</b>           |
| Ferrite                | Max 0.022               | <b>↓</b> ↓       | <b>↑</b>   | -          | <b>↓</b> ↓  | 1              | -                  |
| Cementite              | 6.700                   | <b>^</b>         | <b>↓</b> ↓ | <b>↓</b> ↓ | <b>↑</b> ↑  | <del>+++</del> | -                  |
| Pearlite               | 0.760                   | <b>↑</b>         | <b>↓</b>   | -          | <b>↑</b>    | <b>↓</b>       | -                  |
| Bainite                | -                       | <b>^</b>         | -          | 1          | <b>↑</b> ↑  | <b>↓</b>       | -                  |
| Tempered<br>Martensite | -                       | <b>↑</b> ↑↑      | -          | <b>↑</b> ↑ | <b>↑</b> ↑↑ | <b>↓</b>       | -                  |

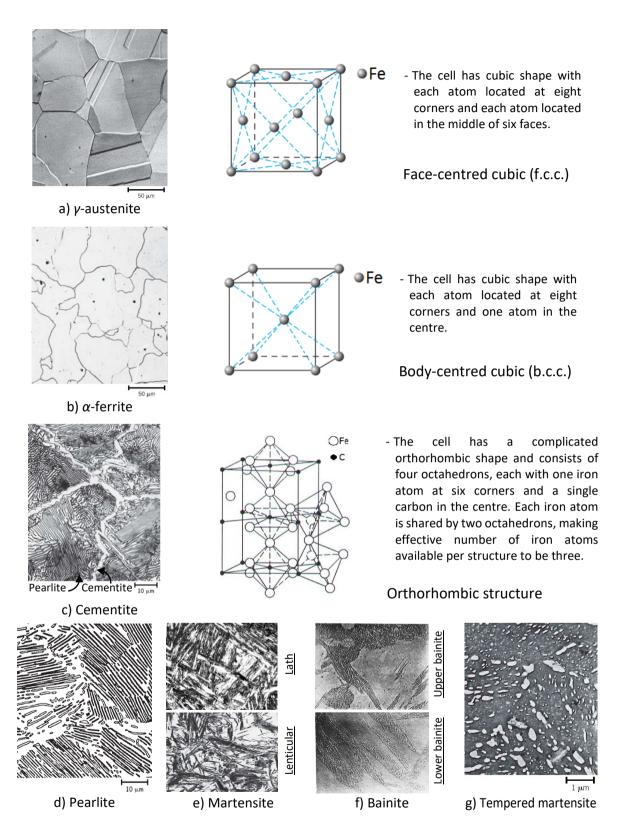



Figure 2.2 Principal crystal types and photomicrographs of microstructures in carbon steels

# 2.2.2 Iron-carbon phase diagram

All metals naturally exist in crystalline state. The crystallization of steel undergoes a temperature-dependent transformation of crystal structure, called allotropic change. Metallurgically, the plain carbon steel is an interstitial solid solution of carbon (C) atoms acting as the solute in iron (Fe) solvent. A phase is a region throughout that all physical properties of a materials are uniform and separable from others. Various equilibrium phases exist in the iron-carbon phase diagram, with the temperature (°C) plotted vertically, and the carbon content (wt%) plotted horizontally, as shown in Figure 2.3.

According to the carbon content, the following classification of the carbon-iron alloy is also indicated at the bottom of Figure 2.3.

C% < 0.022%</li>
 C% = 0.022~2.14%
 C% = 2.14~6.70%
 Pure iron
 Carbon steel
 Cast iron

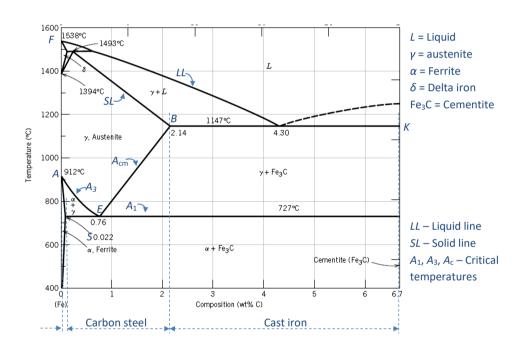



Figure 2.3 Iron-carbon phase diagram

Table 2.2 Critical points in an iron-carbon phase diagram

| Point | Temperature<br>(°C) | Carbon content<br>(wt%) | Significations                                                   |
|-------|---------------------|-------------------------|------------------------------------------------------------------|
| F     | 1538                | 0.000                   | Freezing point of pure iron                                      |
| В     | 1147                | 2.140                   | Maximus solubility of carbon in austenite                        |
| Α     | 912                 | 0.000                   | Allotropic changes                                               |
| E     | 727                 | 0.760                   | Eutectoid point that austenite entirely transforms into pearlite |
| S     | 727                 | 0.022                   | Maximus solubility of carbon in ferrite                          |

When a state or a structure of carbon-iron alloy changes into another, the turning point of the cooling curve is called the critical point in this phase diagram. The curve between two critical points represents the limit line of transformation, and Table 2.2 gives the significations of some critical points relatively to carbon steel

As the temperature falls, the liquid alloy starts to crystallize on liquid line LL, where after, the crystallization ends on line FBK with completely solid austenite. In the range of  $A_1$  to  $A_3$  or  $A_1$  to  $A_{cm}$ , there occurs a reversible equilibrium equation such as:

The symbols  $A_1$ ,  $A_3$  and  $A_{cm}$  are critical temperatures defined as follows:

 $A_1$  – transition line of austenite and pearlite

A<sub>3</sub> – transition line of austenite and ferrite

A<sub>cm</sub> – transition line of austenite and cementite

These symbols are often subscripted with 'c' or 'r' to indicate whether it is on heating or on cooling. For example,  $A_{c1}$  and  $A_{c3}$  denote critical temperatures on heating, and  $A_{r1}$  and  $A_{r3}$  denote critical temperatures on cooling. The velocity-dependent hysteresis causes the shift up of A lines on heating and the shift down on cooling. The faster the heating or cooling rate, the greater the gap is between lines at the same composition point.

## 2.2.3 Transformation of phases throughout the cooling process

Generally, the carbon content of plain carbon steel in structural engineering is around or below 0.2%. Hypoeutectoid steels have a composition  $C_0$  to the left of a eutectoid point O, between 0.022 and 0.76 wt% C. It is feasible to describe the development of microstructures in plain carbon steel during cooling by the phase diagram of hypoeutectoid steel, as shown in Figure 2.4.

In Figure 2.4, the eutectoid point *O* represents the temperature of 727°C and the composition of 0.76 wt% C, that is, where a eutectoid reaction occurs. It is represented by the following equation as well as the formation diagram in Figure 2.4.

$$\nu$$
 (0.760 wt% C)  $\stackrel{\text{Cooling}}{\longleftarrow}$  pearlite [ $\alpha$  (0.022 wt% C) + Fe<sub>3</sub>C (6.7 wt% C)]

Along the vertical line yy' in Figure 2.4, there are four round diagrams at four points that illustrate the microstructural transformation in slow cooling.

At point c, the microstructure consists of entirely austenitic grains above line  $A_3$ . When temperature falls into the two-phase region MNO, both ferrite and austenitic coexist as in the schematic microstructure of points d and e. Initially, most ferritic nuclei precipitate along the origin austenitic grain boundaries (point d), and then, those small ferritic particles start

growing around the shrinking austenite (point e). During cooling through this region, just below  $A_3$  but still above  $A_1$ , the carbon content in ferrite slightly increases along line MN within the ceiling of 0.022 wt% C. Meanwhile, the composition of austenite gets dramatically richer in carbon along line MO, up to the eutectoid composition of 0.76 wt% C, due to the separation of ferrite.

When temperature falls just below  $A_1$ , all the remaining austenite transforms into pearlite by the eutectoid reaction, and the prior ferrite is reserved as proeutectoid (before eutectoid) ferrite surrounding the pearlite colonies, as shown in the schematic diagram at point f. In the formation diagram shown in Figure 2.4, carbon atoms diffuse from ferrite to cementite in the direction indicated by arrows, and the pearlite lamellae extends from the boundary into the grain of parent austenite until the rest austenite is completely consumed. Thus, the formation of pearlite is based on the decomposition of carbon-rich austenite, which momentarily precipitates alternate stringers of cementite and eutectoid ferrite.

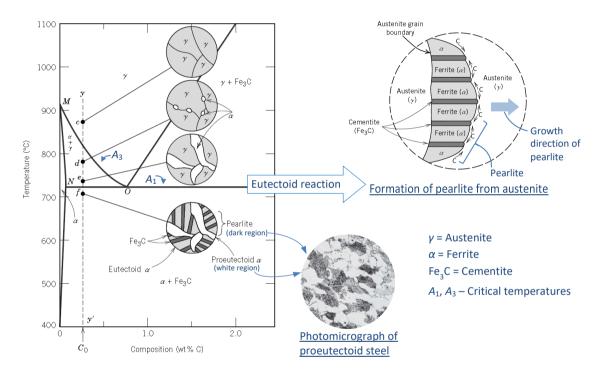



Figure 2.4 Iron-carbon phase diagram of hypoeutectoid steel

# 2.3 Mechanical Working and Heat Treatments

The mechanical working of steel materials is commonly achieved through rolling which readily increases the yield strengths of the steel materials. This effect is apparent in many materials' specifications, which specify several levels of strength reduction with increasing material thickness. However, while rolling increases the strengths of the steel materials, it also reduces their ductility at the same time.

# 2.3.1 Types of delivery conditions

The effect of heat treatments is perhaps best explained by reference to the following production processes or rolling regimes that are widely employed in steel manufacturing:

As-rolled steel
 Normalised steel and Normalised-rolled steel:

N

Thermomechanical rolled steel: M or TMCP

Quenched and tempered steel:

Q

As shown in Figure 2.5, it should be noted that:

- a) During the manufacture of a steel material, steel cools as it is rolled. The typical rolling finish temperature is 750°C, and such steel is termed "As-rolled" or "AR". However, it is usually necessary to provide some sort of heat treatment during rolling to achieve the required mechanical properties.
- b) In general, the process of 'Normalising' is widely adopted in which an as-rolled steel material is heated up to approximately 900°C, and held at that temperature for a specific time, before being allowed to cool naturally. This process refines the grain size and improves the mechanical properties of the steel material, specifically its toughness. It also renders the mechanical properties of the steel material more consistent, and removes residual rolling strains.
  - Normalised rolled is a process whereby the rolling finish temperature is above 900°C, and the steel material is allowed to cool naturally. This has a similar effect on the properties as normalising, but it eliminates one process. Normalised and normalized-rolled steel materials are denoted with "N".
- c) Thermomechanical rolled steel utilises a different chemistry in the steel material, which permits a rolling finish temperature below 700°C, before the steel material cools naturally. It should be noted that greater force is often required to roll the steel material at these temperatures, and that the mechanical properties are retained unless the steel material is reheated above 650°C. Thermomechanical rolled steel is denoted "M" or "TMCP".
- d) The process of quenching and then tempering during the manufacturing of the steel material requires a normalised steel material heated up to 900 °C. The steel material is rapidly cooled or "quenched" to produce steel with high strength and hardness, but low toughness. The toughness is then restored by reheating it to 600°C, maintaining the temperature for a specific time, and then allowing it to cool naturally, or "tempering". Quenched and tempered steel materials are denoted with "Q" or "QT".

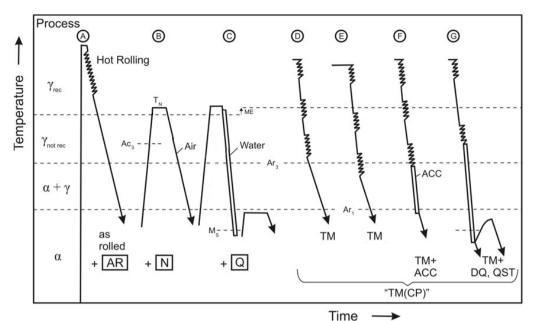



Figure 2.5 Comparison between various delivery conditions

These abbreviations in Figure 2.5 that are not mentioned above can be explained as follows:

 $\gamma_{rec}$  – temperature region for recrystallized austenite

y<sub>not rec</sub> – temperature region for non-recrystallized austenite

 $\alpha+\gamma$  – temperature region for coexistence of ferrite and austenite

 α – temperature region for coexistence of ferrite and pearlite (or ferrite and bainite or and tempered martensite)

ME – temperature increase for recrystallization due to micro-alloying

T<sub>N</sub> – normalizing temperature

ACC - accelerated cooling

DQ - direct quenched

QST – self tempering of quenched material

# 2.3.2 Metallurgical aspects of rolling and heat-treatments

# a) Hot rolling

Rolling is a forming operation of metal, in which metal passes through multiple rollers to produce a sequential reduction and uniformity in thickness. Hot rolling is conducted above the temperature at which recrystallization occurs; otherwise, it's cold rolling.

Semi-finished casting products are large-size steels, such as billets, blooms, and slabs. To obtain required shapes and properties, homogeneously heated as-cast steel is precisely rolled above the recrystallization temperature, then cooled in the static air. This rolling method is regarded as the term "as-rolled condition". It produces AR steel that will be subsequently heat-treated to achieve more specific properties as customer requires.

Above the recrystallization temperature, the microstructure of steel is completely austenite consisting of coarse equiaxed grains. As the material remains relatively soft and ductile in the austenitic state, the large plastic deformation is possible and repeatable. The hot-rolling

serves as a process to damage cast microstructure, refine crystal grains, and eliminate defects of the microstructure. The steel organization is compacted and homogenized during the hot rolling. Besides, the external defects formed during pouring, such as bubbles, cracks, and osteoporosis, can be welded together under elevated temperatures and pressures.

However, the hot-rolled steel is no longer isotropic to a certain extent. The improved mechanical properties reflect in the rolling direction. Non-metallic oxides and sulphides result in internal stratification and external scaled appearance. In addition, the deformation and uneven cooling induce residual stresses. Dimensional tolerances vary widely from 2 to 5 % of the overall dimensions due to thermal contraction and warping.

Figure 2.6 shows the change in grain size of the crystalline structure during hot-rolling. The restoration process will be discussed in the following text.

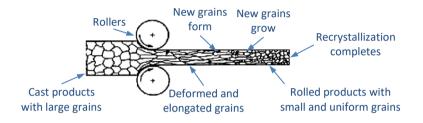



Figure 2.6 Schematic illustration of change in microstructure during hot rolling

# b) Normalizing

Normalizing is regarded as the softening process in heat-treatment. AR steel is re-heated about  $50^{\circ}\text{C}$  above the critical temperature  $A_{c3}$  (for proeutectoid steel) to restore the crystalline structure in austenitic phase. At elevated temperatures, a recovery phase occurs, and most of the internal residual stresses are relieved by eliminating crystal imperfections and rearranging dislocation configurations. After recovery is finished, recrystallization phase begins to refine the grain structure, and continues to relieve stresses. A new set of strain-free and equiaxed grains nucleates and grows by consuming the original deformed grains, until recrystallization completes. In this phase, the previously stress-hardened steel becomes softer and weaker, yet more ductile. Grain growth is the third phase following recrystallization, in which strain-free grains will continue growing if the steel is held at high temperatures. The average grain size increases with time, and therefore, the heat treatment should be terminated before appreciable grain growth has occurred to ensure the microstructure is fine-grained. The changes of characteristics and microstructure are graphically presented in Figure 2.7.

Recovery, recrystallization, and grain growth are time-dependent and non-instantaneous processes. Also, heating and cooling generate temperature gradients between the outside and the interior portions of the metal piece. Large temperature gradients may lead to warping or even cracking in case that temperature drops rapidly. Thus, the holding time at high temperature must be sufficient to accomplish all necessary transformations, and to achieve a uniform thermal transmission in temperature gradients.

The grain sizes of ferrite and pearlite at room temperature depend on the cooling rate. The grain will be coarser if cooled slowly in furnace, or finer if cooled faster in air. In normalizing process, prior refined austenitic grains and air-cooling produce uniform compositions and finer grains of the ferrite and pearlite structure, resulting in higher strength and hardness together with lower ductility.

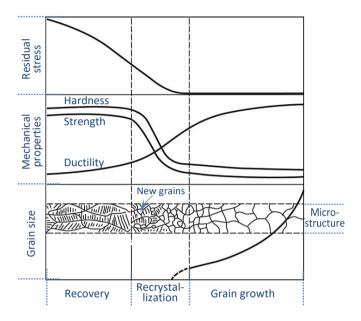



Figure 2.7 Schematic representation of recovery, recrystallization and grain growth

#### c) Thermomechanical rolling

Thermomechanical rolling involves various combinations of controlled thermal treatments and mechanical deformation processes in order to obtain cost-effective steel products with high strength and toughness.

Suitable micro-alloying elements, like Niobium (Nb), Vanadium (V), and Titanium (Ti), are frequently added in steel to enhance the strength by inducing fine and stable interphase precipitation of carbides and nitrides. This can restrict austenite grain growth or retard austenitic recrystallization, which is useful for controlling the grain size.

Controlled rolling is usually conducted in two or three stages based on the deformation occurrence relative to the phase transformation. Therefore, microstructural changes in steel during rolling processes can be divided into the following groups as depicted in Figure 2.5:

- In high temperature region of recrystallization, coarse austenite grains are refined by repeated deformations to produce recrystallized grains that transform into relatively coarse alpha grains.
- In low temperature region of non-recrystallization, unrecrystallized austenite grains elongate and form interior deformation bands where ferrite nucleates as well as the austenitic grain boundaries to produce finer alpha grains.

 In two-phase temperature region of austenite and ferrite, austenite continues to form deformation bands, and ferrite deforms to produce a substructure. In cooling, austenite transforms into equiaxed alpha grains while the deformed ferrite sub grains are retained.

Deformation bands and ferrite substructures are important features of controlled rolling. The former internally divides the austenite grain into several blocks, producing a much more refined grain structure. The latter causes a significant increase in the yield strength of the steel.

After rolling completes, a subsequent controlled cooling process is applied to suppress the growth of transformed products, and achieve further refinement of grains. The increased cooling rate will retard the decomposition of austenite and form different micro-constituents by superimposed cooling.

Figure 2.5 illustrates three typical cooling conditions in appropriate cooling mediums: air cooling, accelerate cooling and quenching followed by tempering. The corresponding microstructures after cooling are ferrite, pearlite, bainite, and martensite (or tempered martensite), in order of descending temperature of transformation from austenitic phase.

Table 2.3 summarizes the influence of different cooling conditions on formation and morphology of typical phases that lead to wide differences in properties of the steel.

Table 2.3 Typical microstructures of steels and their morphologies in cooling conditions

| Cooling condition                                  |                                                                                                                                     | Phase                           | Morphology                                                                                                                                                                                                                               | Property                                     |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Slow                                               | Equilibrium cooling (in furnace)                                                                                                    | Pearlite and                    | Nearly equiaxed ferrite of coarse grains and pearlite lamellae                                                                                                                                                                           | aker<br>ile<br>jh                            |
| Slow                                               | faster than Equilibrium cooling (in air)                                                                                            | ferrite                         | Finer feathery ferrite grains and denser pearlite lamellae                                                                                                                                                                               | Softer / Weaker More ductile Less tough      |
| Initial accelerated cooling (in water) then slower |                                                                                                                                     | Upper<br>bainite and<br>ferrite | Feathery ferrite plates with fine carbide precipitation predominantly on the boundaries                                                                                                                                                  |                                              |
| cooling                                            | cooling (in air) or isothermal cooling                                                                                              | Lower<br>bainite and<br>ferrite | Acicular ferrite plates with fine carbide precipitation all over the plates at random                                                                                                                                                    |                                              |
| Fast<br>cooling                                    | Very fast cooling (in oil or water) to avoid intruding into other formation areas (e.g. pearlite or bainite), followed by tempering |                                 | Process G of Figure 2.5 shows TM-rolling followed by direct quenching and self-tempering. While the outer layer of the material is quenched, the interior stays warmer to subsequently give a tempering by the quenched material itself. | Harder / Stronger ← Less ductile ← Tougher ← |

With the assistance of time-temperature-transformation curve diagrams and continuous-cooling-transformation curve diagrams of steel, various thermomechanical controlled processing "TM(CP)" are developed to obtain special properties by inducing morphological improvement in the microstructure of steel, especially for thick steel plates and high-strength-low-alloy steel.

# d) Quenching and tempering

Quenching and tempering are regarded as the hardening process in heat treatment. In quenching, a work piece is re-heated above the critical temperature  $A_{c3}$  in order to transform the soft initial structure into full austenite. It is then cooled rapidly by soaking into the quenching medium, such as water or oil, to make transformation occur only in martensitic temperature range. To decide the appropriate cooling rate for producing martensite as much as possible, there are many factors including the characteristics of the quenching medium, the size and geometry of the steel piece, and the alloy composition.

A martensitic structure produced after quenching is hard and brittle with high residual stresses. To prevent cracking and distortion, tempering should be carried out immediately to relieve internal residual stresses. The quenched steel is reheated over the temperature  $M_{\text{S}}$  at which martensite starts to form, but below the eutectoid temperature  $A_{\text{c1}}$  to avoid phase transformation. The temperature range is normally between  $250^{\circ}\text{C} \sim 650^{\circ}\text{C}$ . At elevated temperatures, carbon atoms migrate out of the highly strained martensitic lattice to form iron carbide precipitating in the ferrite matrix. Internal stresses get released by carbon diffusion. A specific holding time before cooling is necessary as the microstructure changes slowly. After tempering, the single-phase martensite transforms into the tempered martensite composed of the stable cementite and ferrite. The fine and uniform cementite particles result in the high strength and hardness as martensite, and the continuous ferrite matrix improves ductility and toughness.

# 2.4 Chemical Composition

In general, the chemical composition is the most important factor affecting the mechanical properties of steel materials. Adding chemical elements such as Carbon, Manganese, Niobium and Vanadium either during tapping or secondary steel making will increase the strengths of the steel materials. However, these additions not only add to the cost of the steel materials, but also adversely affect other mechanical properties such as ductility, toughness, and weldability. For example, the Sulphur level should be kept low for good ductility while toughness may be readily improved with the addition of Nickel. Consequently, the chemical composition for each steel material has to be carefully considered to achieve the required properties.

# 2.4.1 Effects on mechanical and material performance

The effects of some commonly used chemical elements on the mechanical and material performance of steel materials are summarized in Table 2.4 while their effects on the properties of hot-rolled and heat-treated carbon and alloy steels are described as follows:

# a) Iron (Fe)

Iron is the single most important element in a steel material, comprising roughly 95% of the steel material. Any steel material with a percentage of iron lower than 95% will not be classified as "structural".

## b) Carbon (C)

Carbon is the second most important chemical element in the steel material. It is commonly regarded as the principal strengthening (hardening) element where each additional increment increases hardness as well as both yield and tensile strengths of the steel material. However, increased amounts of carbon cause a decrease in ductility, toughness and weldability. Typical Carbon contents in modern steel materials range from 0.05 to 0.25 %.

#### c) Manganese (Mn)

An important element, Manganese also increases strength and hardness of the steel material, but to a lesser degree than Carbon. Increasing the Manganese content also decreases ductility and weldability, but again, to a lesser extent than Carbon. Manganese has a strong effect on the hardenability of the steel material, and is beneficial to surface quality. Typical Manganese contents in modern steel materials range from 0.50 to 1.70 %.

It should be noted that Manganese combines with sulphur to form manganese sulphides which are globular, non-metallic inclusions in the matrix of the steel material, thus minimizing the harmful effects of sulphur. The amount of such inclusions and the degree to which they have been deformed during the hot-rolling process have significant effects on the through-thickness properties of steel. This also affects the welded fabrication of steel sections.

# d) Sulphur (S)

Sulphur has detrimental effects on strength, transverse ductility, toughness as well as the weldability of steel materials. It also promotes segregation in the matrix of the steel material. For these reasons, it is generally considered an undesirable element, and the content of Sulphur is thus restricted to no more than 0.04 to 0.05 %. It should be noted that current continuous cast steel sections, which are often silicon-killed, generally have an actual sulphur content of around 0.02 to 0.03 %, and this is well within the specification limits.

It is generally considered that through-thickness (TT) properties for ingot-based products can be improved by lowering the Sulphide content. This is because through-thickness strength and ductility are tied to non-metallic inclusions in the form of Manganese Sulphides (MnS). Hence, lowering the magnitude and number of such inclusions improves the TT response of the steel material. For lamellar tearing resistant plate steels, the maximum sulphur content is typically found to be 0.01 %.

### e) Phosphorus (P)

As for Sulphur, Phosphorus promotes segregation in the matrix of the steel material. Increasing the Phosphorus contents increases strength and hardness, but reduces ductility and toughness in the as-rolled condition. Such a reduction in ductility and toughness is found to be more pronounced in quenched and tempered high cabon steel materials.

### f) Chromium (Cr)

Chromium is primarily used to increase the corrosion resistance of a steel material. It also increases hardenability, strengths at high temperatures and improves abrasion resistance. Different types of weathering steel have various Chromium contents ranging from 0.1 to 0.9 %.

# g) Copper (Cu)

Copper is the other primary corrosion-resistant element used in a steel material. It is typically at not less than 0.2 % for steel materials manufactured with the use of an electric arc furnace (EAF), and about 0.02 to 0.03 % for steel materials manufactured with the use of a basic oxygen furnace (BOF).

## h) Silicon (Si)

Silicon is one of the two most important steel material de-oxidizers, and this means that it is very effective in removing oxygen from the steel material during the pouring and solidification process. Typical Silicon content of a steel material is less than 0.4 %, but it must be at least 0.1 % if the steel material is to be considered fully killed. The removal of Oxygen to the point that Carbon Monoxide (CO) does not develop during solidification is referred to as a 'killing' condition, and this leads to the use of those terms such as 'killed' or 'semi-killed' steel materials. Steel materials produced with little or no oxygen removal are called rimmed or cawed steels. It should be noted that killed steels generally have a more uniform, finer grained crystalline structure, and hence, their strength, ductility and toughness are significantly better than those of the semi-killed and rimmed steels.

Because of the nature of this form of steel production, ingot-based steel products are generally classified as killed, semi-killed or rimmed steel materials. In the past, most small and medium-size rolled sections were delivered as rimmed sections, unless the purchaser specifically ordered semi-killed or killed rolled sections. Nowadays, production of sections in many steel mills is entirely based on continuous casting, and hence, all of these sections are fully killed due to the nature of the process. It should be noted that while Silicon is the primary killing agent for sections, both Aluminium and Silicon are used for plates.

# i) Aluminium (Al)

Aluminium is the other primary killing agent for steel materials, and it is sometimes used in combination with Silicon. In modern steel mills, Aluminium is used in plates for grain refinement.

# j) Columbium (Cb)

Columbium which is also referred to as Niobium (Nb) is used to enhance the strength of a steel material, and is one of the key elements in the various high strength low alloys steel materials. It has effects similar to those of Manganese and Vanadium, and is often used in combination with Vanadium. Due to weldability requirements, Columbium is used in an amount less than 0.05 % in high strength steel materials.

# k) Molybdenum (Mo)

Molybdenum has effects similar to those of Manganese and Vanadium, and is often used in combination with one or the other. This element increases readily the strength of the steel material at elevated temperatures as well as the corrosion resistance.

### l) Nickel (Ni)

Nickel is a powerful anti-corrosion agent, and it is also one of the most important elements in improving toughness of a steel material. In combination with Chromium, Nickel improves hardenability, impact strength, and fatigue resistance of the steel material. The Nickel contents generally vary between 0.25 and 1.5%.

#### m) Vanadium (V)

Vanadium has effects similar to those of Manganese, Columbium and Molybdenum. In particular, it aids in the development of a tough, fine-grained steel structure. Vanadium is an important alloying element in HSLA steel materials.

#### n) Boron (B)

Boron is useful as an alloying element in the steel because of its effect on hardenability enhancement. Boron is added to unalloyed and low alloyed steels to enhance the hardness level through enhancement hardenability. Boron added to high-speed-cut steels could enhance their cutting performance, but would reduce their forging qualities. Addition of boron in quantities of up to 0.01% to austenitic steels also improves their high-temperature strength. Boron steels are used as high-quality, heat-treatable constructional steels, steels for carburization and cold forming steels such as steels for screws. However,

high Boron content would lead to a risk of hydrogen induced cold cracking following welding. Thus, it is important to monitor the Boron content during tapping and the steel making process.

Other chemical elements: Some of the structural steels, especially the HSLA-types, use small amounts of elements such as Boron (B) and Titanium (Ti). Boron enhances strength; it also improves the hardenability of quenched and tempered structural steels. Titanium improves toughness. Nitrogen (N) will be present as well; in combination with some elements, it enhances the strength of the steel material. However, free nitrogen is an important factor in the strain aging that may occur in certain steel materials under certain conditions; this is not considered a critical issue for structural steel materials.

It should be noted that due to the changes in steelmaking practice over the past decade, the use of scrap as a source for the furnaces, so-called residual elements (or simply residuals) may play a role in the development of steel materials with desirable properties.

 Table 2.4
 Typical functions of chemical elements in structural carbon steels

| Elements          | Typical content (%) | Strength | Ductility | Toughness | Hardness | Weldability | Corrosion resistance | Remarks                                                                                                                 |
|-------------------|---------------------|----------|-----------|-----------|----------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Aluminum (Al)     | 0 ~ 0.015           | <b>↑</b> | -         | <b>↑</b>  | -        | -           | -                    |                                                                                                                         |
| Boron (B)         | 0 ~ 0.005           | -        | -         | -         | 1        | -           | -                    | Uses only in aluminium-killed steels, and most effective in low carbon steel.                                           |
| Calcium (Ca)      | 0~0.015             | 1        | -         | <b>↑</b>  | -        | <b>↑</b>    | -                    | <ul> <li>Minimizes re-heat cracking</li> <li>Prevents lamellar tearing in large restrained welded structures</li> </ul> |
| Carbon (C)        | 0.05 ~ 0.25         | 1        | <b>↓</b>  | <b>\</b>  | <b>↑</b> | <b>\</b>    | -                    | Moderate tendency to segregate                                                                                          |
| Chromium (Cr)     | 0.10 ~ 0.90         | 1        | -         | -         | 1        | -           | 1                    |                                                                                                                         |
| Copper (Cu)       | 0.20 ~ 0.60         | -        | -         | -         | -        | -           | <b>↑</b>             |                                                                                                                         |
| Manganese (Mn)    | 0.50 ~ 1.70         | 1        | <b>↓</b>  | -         | 1        | <b>→</b>    | -                    | Controls harmful effect of Sulphur                                                                                      |
| Molybdenum (Mo)   | < 0.30              | 1        | -         | -         | -        | -           | <b>↑</b>             | Increases the yield strength at elevated temperatures, as well as the creep strength.                                   |
| Columbium (Nb/Cb) | < 0.05              | 1        | -         | <b>↑</b>  | -        | -           | -                    | Columbium (Cb) referred to as niobium (Nb) in Europe is one of the key elements in the various HSLA grades.             |
| Nitrogen (N)      | 0 ~ 0.004           | <b>↑</b> | <b>↓</b>  | <b>↓</b>  | 1        | -           | -                    |                                                                                                                         |
| Nickel (Ni)       | 0.25 ~ 1.50         | 1        | -         | 1         | -        | -           | <b>↑</b>             |                                                                                                                         |
| Phosphorus (P)    | < 0.05              | 1        | <b>↓</b>  | <b>↓</b>  | 1        | <b>→</b>    | -                    |                                                                                                                         |
| Sulphur (S)       | < 0.05              | <b>↓</b> | <b>↓</b>  | <b>↓</b>  | -        | <b>→</b>    | -                    |                                                                                                                         |
| Silicon (Si)      | 0.10 ~ 0.40         | -        | -         | -         | -        | -           | -                    | Good deoxidizers of steel                                                                                               |
| Titanium (Ti)     |                     | 1        | -         | <b>↑</b>  | 1        | -           | -                    | Increases creep and rupture strength                                                                                    |
| Vanadium (V)      | < 0.20              | 1        | -         | 1         | -        | -           | -                    |                                                                                                                         |

# 2.4.2 Effects on weldability

It is essential that a steel material has a chemical composition that promotes fusion of the base metal and the weld electrode (filler) metal, without the formation of cracks and similar imperfections during welding. This characteristic is referred to as the weldability of the steel material. In general, all currently available steel materials are weldable although the requirements for some high strength steel materials are considerably more restrictive than those for normal strength steel materials.

The most common measure of weldability is the carbon equivalent value, CEV, which is used to assess the combined effect of carbon and the other chemical elements on the cracking susceptibility of the steel materials. Based on testing of the steel materials within certain ranges of chemical compositions, various empirical formulas for determination of the CEV of steel materials are available:

CEV = C + 
$$(Mn + Si) / 6 + (Cr + Mo + Cb + V) / 5 + (Ni + Cu) / 15$$
 (Eq. A)  
= C +  $Mn / 6$  +  $(Cr + Mo + V) / 5$  +  $(Ni + Cu) / 15$  (Eq. B)  
= C + Si / 30 +  $(Mn + CU + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B$  (Eq. C)

The numbers that are entered are the chemical element contents in percent. It should be noted that:

- a) For the CEV from Eq. A, weldability is deemed acceptable if the CEV is less than approximately 0.50.
- b) Eq. B is probably the most commonly used, and it is the formula proposed by the International Institute of Welding (IIW). A carbon equivalent based on Eq. B is known to be a good measure of the hardenability of the steel, and the weldability is good if the CEV is less than 0.43 for most commonly adopted structural steelwork.
- c) The CEV from Eq. C is commonly referred to as  $P_{cm}$ , the composition parameter. It is a carbon equivalent formula that was developed on the basis of a large number of tests of the cracking susceptibility of HSLA steels. The acceptability level for the CEV from Eq. C is approximately 0.23.

It should be noted that Eq. B is referred to in subsequent sections of this document. A number of manual, semi-automatic and automatic welding processes are currently available. Certain types are generally preferred for structural shop welding, while others are preferred for field welding. The American Welding Society's (AWS) "Welding Handbook" offers detailed descriptions of all such processes, along with their advantages and disadvantages.

# 2.5 Basic Material Properties of Steel Materials

The basic material properties of steel materials are:

Modulus of elasticity, E =  $210.0 \text{ kN/mm}^2$ Shear modulus, G =  $80.0 \text{ kN/mm}^2$ Poisson's ratio, v = 0.3Coefficient of linear thermal expansion =  $12 \times 10^{-6} / {}^{\circ}\text{C}$ 

- 12 x 10 /

## 2.6 Designation of Steel Grades

The designation of steel grades is defined in the product standard for hot rolled products and structural steels in EN 10027-1, and the classification of steel grades is based on the minimum specified yield strength at ambient temperature together with various parameters for other mechanical properties and delivery conditions as follows:

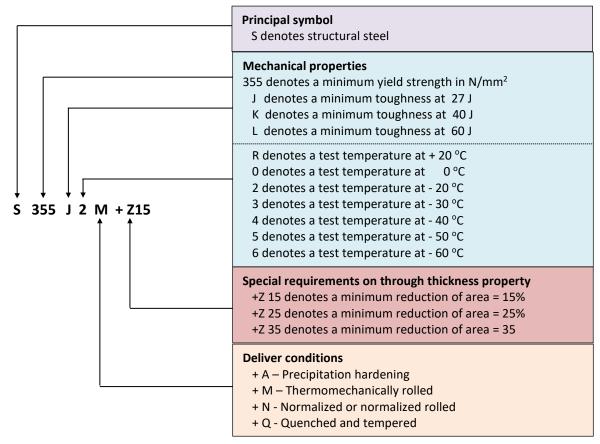



Figure 2.8 Designation of steel grade according to EN 10027-1

For guidance on the choice of through-thickness properties, refer to EN 1993-1-10.

# Section 3 Equivalence of Steel Materials and Their Selection

In this Chapter, a number of general criteria which influence the use of steel materials are presented together with basic considerations on the use of various steel product forms. The overall selection considerations for design and construction engineers are also described.

As the main theme of this Chapter is equivalence of steel materials, the essential requirements for establishing equivalent steel materials to European steel materials specifications are fully described. Material performance requirements given in various parts of EN 10025, EN 10149, EN 10210 and EN 10219 as well as other sources are summarized in a tabulated format, and these are presented systematically in Tables MR 1 to 11 for easy reference. Quality assurance requirements recommended in various European steel materials specifications are also briefly presented, and key features of a Factory Production Control system given in Appendix B.4 of EN 10025-1 is described.

## 3.1 Criteria Influencing Use of Steel Materials

In a steel structure, the steel materials are primarily subject to axial (tensile and compressive) forces, shear forces and bending moments. They respond linearly to applied stresses up to a 'yield point', and thereafter exhibit a significant capacity for plastic straining after first yield. Alternatively, especially for high strength steel materials, they respond non-linearly to applied stresses, and the proof strength is considered to be achieved when a 'proof strain' at 0.2 % is attained. At large deformations, i.e., strains larger than 2 %, post-yielding strengths are significantly larger than yield strengths because of the effect of strain hardening, up to tensile strengths, typically, 15 to 25% in excess of the yield values. The steel materials fracture eventually at a typical elongation with a strain limit of 15 to 25%. It should be noted that this mechanical behaviour is fully utilised to advantage in structural steelwork through rational design for structural adequacy and economy.

#### 3.1.1 Basic considerations

Steel materials are supplied in two product forms:

- i) flat products including
  - steel plates with thicknesses larger than 3.0 mm and up to 150 mm, and
  - steel strips with thicknesses smaller than or equal to 3.0 mm,

and

- ii) long products including
  - hot rolled sections such as universal beams, universal columns, joists, channels, angles and tees,
  - hot rolled or cold formed bearing piles,
  - hot finished hollow sections such as rectangular, square and circular hollow sections, and
  - cold formed hollow sections.

For structural applications, these products are inevitably cut to size and shape, and components are connected to one another through either bolts or welding in fabrication shops or on site.

The basic requirement in the choice of a particular steel material is that it should be fit for the intended application and the design conditions required. The mechanical properties of particular importance to a steel designer include:

- strength,
- ductility,
- toughness,
- through thickness properties,
- weldability, and
- strength, stiffness and thermal expansion at elevated temperatures.

In addition, the steel materials should have a required service life which suits the expected environmental conditions, and hence, corrosion resistance is also important.

Where the steel material is to be fabricated into components or structures, its ability to retain the required properties during fabrication should be clearly established. One of the most important factors is the weldability of the steel material, and in this respect, the chemical composition of the steel material should be controlled within tight limits, and the welding processes and procedures adopted should be compatible with the steel material chosen.

In practice, both corrosion resistance and fire resistance of the steel material may be important factors in some structural applications. A clear decision has to be taken at the design stage as to whether corrosion resistance and fire resistance are to be achieved through the use of additional protection systems, or inherently through the chemical composition of the steel material itself.

Increased strength of steels can be obtained using various processes, including an increased alloying content, mechanical rolling and heat treatment, or cold working. In general, as the strength increases so does the cost, and there may be little advantage in using high strength steel materials in situations where either fatigue or buckling are likely to be the critical modes of failure.

Certain product forms are available only in certain types and grades of steel materials. It may not be possible to use high strength steel materials for some product shapes and retain their dimensional tolerances through the various stages of heat treatments when distortion becomes significant.

#### 3.1.2 Overall selection considerations

Among various discussions on chemical composition, mechanical working and heat treatments of steel materials as well as key issues of structural design and fabrication, the following considerations are recommended when selecting steel materials for a particular structure:

- i) Type of structure, structural form, supporting conditions
- ii) Loading requirements, service conditions, dynamic or cyclic loads
- iii) Material strength, ductility, toughness, through thickness properties, weldability, and chemical composition
- iv) Service environment, atmospheric corrosion and fire protection
- v) Structural member types, sizes and lengths as well as connection methods: welded or bolted connections
- vi) Connection configurations between members: beam-to-column connections, beam-to-beam connections, compression and tension splices
- vii) Fabrication methods, including joining techniques, cutting, grinding, shop welding, and site welding
- viii) Construction sequence and requirements, including site welding
- ix) Qualifications and experience of design, fabrication and construction personnel
- x) Equipment required for shop fabrication and site erection
- xi) Inspection methods and the qualifications and Quality Assurance procedures of the inspection personnel
- xii) Special considerations:
  - complicated connections with heavy bolted and welded connections;
  - large weldment in a tri-axial state of stress, strain and restraint;
  - weld contraction restraint and associated deformations;
  - directionality of material properties;
  - occurrence and consequences of cracks during (a) fabrication, (b) erection, and
     (c) service;
  - fatigue details, crack initiation and propagation;
  - brittle fracture conditions; and
  - corrosion and stress corrosion.

Although there are many material requirements and tests that may be conducted, many of them are only applicable to certain types of structures. For example, a bridge structure, which is exposed to the natural environment and subject to high cycle fatigue conditions, needs to have steel materials with toughness properties that are commensurate with the anticipated service conditions. Clearly, it will be neither realistic nor economical to specify similar criteria for a statically loaded, enclosed building structure.

# 3.2 Equivalence of Steel Materials

In the 2000s, owing to large fluctuations in the costs of steel materials in the global markets, Chinese steel materials became practical alternatives to British steel materials on a number of construction projects in Asia, in particular, in Hong Kong, Macau and Singapore. During the drafting of the "Code of Practice for the Structural Use of Steel" for the Buildings Department of the Government of Hong Kong SAR from February 2003 to August 2005, it was decided necessary to devise a means to allow, or more accurately, to formalize, the use of Chinese steel materials as equivalent steel materials for structures which were originally designed to BS5950. Various parts of Chapter 3 of the Hong Kong Steel Code does provide basic principles and considerations for qualifying, as well as accepting, steel materials manufactured to the following national materials specifications:

- American standards,
- Japanese standards,
- Australian / New Zealand standards,
- Chinese standards, and
- Russian standards.

A simple and practical classification system for non-British steel materials is also included in the Hong Kong Steel Code by which the design strengths of these steel materials depend on the adequacy of materials specifications as well as effectiveness of the quality control procedures followed during their production.

A similar use of non-British steel materials was also formally adopted in Singapore with the issue of a technical guide entitled "Design Guide on Use of Alternative Steel Materials to BS5950" in 2008, and then its revised version entitled "Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3" in 2012 by the Building and Construction Authority of the Ministry of National Development. These Design Guides aim to provide technical guidelines and design information on the use of non-British steel materials, and the classification system for various steel materials given in the Hong Kong Steel Code was adopted after minor modification. Under the provisions of these Design Guides, alternative steel materials, not manufactured to European steel materials specifications, may be allowed in structural design based on the Structural Eurocodes for construction projects in Singapore.

It should be noted that the following product forms are covered:

- 1) Structural steels
  - plates
  - sections
  - hollow sections
  - sheet piles
  - solid bars
  - strips for cold formed open sections

- 2) Thin gauge strips
  - strips for cold formed profiled sheetings
- 3) Connection materials
  - stud connectors
  - non-preloaded bolted assemblies
  - preloaded bolted assemblies
  - welding consumables

# 3.2.1 Selection principles

Based on the experiences of the construction industry in Hong Kong and Singapore over the past 30 years as well as the use of both the "Code of Practice for the Structural Use of Steel" in Hong Kong and the "Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3" in Singapore over the past 8 to 10 years, the selection principles for equivalence of steel materials have been established. Both minimum acceptable standards of material performance and quality assurance are considered to be essential requirements for steel materials to be accepted as 'equivalent". After due consideration, key selection principles have been identified as follows:

- Material performance
  - a) mechanical strengths for structural adequacy,
  - b) ductility for sustained resistances at large deformations,
  - c) toughness in terms of energy absorption against impact, and
  - d) chemical compositions and weldability for minimized risks of crack formation in welds.

Thus, it is essential for the manufacturer of any proposed equivalent steel material to demonstrate full compliance with the material performance requirements on dimensional accuracy, mechanical properties, and chemical composition during the manufacturing processes to ensure the material adequacy for use in structural design according to EN 1993 and EN 1994.

- Quality assurance systems
  - a) demonstrated compliance with acceptable reference standards,
  - b) demonstrated compliance with material tests with sufficient sampling on both chemical composition and mechanical properties, and
  - c) effective implementation of certificated quality assurance systems.

It is also essential for the manufacturer of any proposed equivalent steel material to demonstrate full compliance with the quality assurance requirements during the manufacturing process to ensure its adequacy for use in structural design according to EN 1993 and EN 1994.

In order to demonstrate compliance with the material performance and the quality assurance requirements to European steel materials specifications, intensive routine testing should be conducted according to the relevant materials specifications whilst the manufacturing process should be demonstrated as operating effectively under a Certified

Quality Assurance System. A good example is a Certified Factory Production Control system to Appendix B.4 of EN 10025-1 which should have been effectively implemented, successfully certified and regularly monitored by an independent qualified Certification Body.

When performing rational selection of equivalent steel materials, the following considerations on mechanical properties and chemical composition should be taken account of:

# a) Material strengths for structural adequacy

Both the minimum yield strength,  $R_{eh}$ , and the ultimate tensile strength,  $R_{m}$ , of the proposed steel materials should be directly adopted from their national materials specifications. It should be noted that the values of these two strength parameters depend heavily on both the dimensions of the coupons and the testing procedures. According to most European steel materials specifications, the values of both the minimum yield and the ultimate tensile strengths are gradually reduced when the plate thickness increases.

Owing to the different systems of strength grades used by various national materials specifications, the values of both the minimum yield and the ultimate tensile strengths are often different to those of the corresponding European steel materials specifications. In these cases, re-design of structural steelwork is necessary.

# b) Ductility for sustained resistances at large deformations:

Ductility of steel materials correlates approximately with their elongation limits, that is, the elongations of steel coupons at fracture in standard coupon tests. The values of the elongation limits depend heavily on the dimensions of the steel coupons and the testing procedures as well as the product forms of the proposed steel materials and the steel coupon sampling methods.

If a proposed steel material does not possess sufficient ductility as required by the relevant steel design codes, then the proposed steel material will not be accepted as an equivalent steel material.

# c) Toughness in terms of energy absorption against impact

Toughness is an important mechanical property of steel materials, which is the resistance against brittle fracture, and is quantified as the amount of dissipated energy obtained from standard Charpy V-notch impact tests at various design temperatures. In general, if a proposed steel material does not possess sufficient toughness as required in the relevant European steel materials specifications, then the proposed steel material will not be accepted as an equivalent steel material.

Nevertheless, the threshold values of this quantity are found to be related to both the stress levels and the thicknesses of the steel plates, and hence, these values are readily reduced for actual applications of the steel materials using codified rules. In general, these values are often reduced significantly when thin plates are used, and in these circumstances, the steel materials are likely to be considered acceptable.

d) Chemical compositions and weldability to minimize risks of crack formation in welds

As discussed in Chapter 2, the contents of a number of chemicals should be kept to an optimal limit, such as Carbon, Sulphur and Phosphorus as their presence tend to reduce ductility, toughness and weldability as well as promote segregation at the same time. As a simple rule for hot-rolled structural steel sections, the maximum Carbon content should not exceed 0.25 % while the maximum Sulphur content should not exceed 0.05 %. Moreover, the maximum Phosphorus content should not exceed 0.05 %, which is further limited to 0.01 % when a through thickness quality, i.e. Z quality, is specified.

The weldability of steel materials depends on the carbon equivalent value, CEV, which represents the combined effects of Carbon and other chemical elements on the cracking susceptibility of the steel materials.

Hence, if any one of the contents of these non-beneficial chemicals present in a proposed steel material exceeds the corresponding limit given in the relevant European materials specifications, then the proposed steel material will not be automatically accepted as an equivalent steel material. Moreover, if the CEV value of the proposed steel material exceeds the corresponding limit, then, the proposed steel material should be used with caution. Details of the welding procedures, such as interpass temperatures, should be modified according to the thicknesses of the steel materials. Furthermore, welding consumables shall match the steel types, otherwise, testing for non-qualifying welding consumables should be undertaken.

### 3.2.2 Classification of Steel Materials

Given a satisfactory demonstration of both the material performance and the quality assurance during their manufacturing processes, steel materials with yield strengths from 235 to 690 N/mm<sup>2</sup> are classified as follows:

### Class E1 Steel Materials

Steel materials which are

- manufactured in accordance with one of the Acceptable Materials Specifications listed in Appendix A with a fully demonstrated compliance on their material performance, and
- ii) manufactured in accordance with an **Acceptable Quality Assurance System** with a fully demonstration of its effective implementation.

Thus, compliance with all the material requirements has been demonstrated through intensive routine testing conducted during the effective implementation of a certificated Factory Production Control system according to European steel materials specifications. The Factory Production Control System should be certified by an independent qualified certification body.

#### Class E2 Steel Materials

Steel materials which are

- manufactured in accordance with one of the Acceptable Materials Specifications listed in Appendix A with a fully demonstrated compliance on their material performance, and
- ii) manufactured in accordance with an effectively implemented quality assurance system which is different to a Factory Production Control System.

Thus, the steel materials are manufactured in accordance with all the material requirements given in one of the Acceptable Materials Specifications, but without a certified Factory Production Control System in accordance with European steel materials specifications. In general, many steel manufacturers will have already established a form of quality assurance during the manufacturing processes, however, a high level of consistency in the material performance of the steel materials required in European steel materials specifications cannot be verified in the absence of a certified Factory Production Control System. Hence, a demonstration of the conformity of the steel materials is required, additional material tests with sufficient sampling should be conducted for various batches of supply to demonstrate full compliance with both the material performance and the quality assurance requirements. Refer to Section 3.2.3 for details of additional materials tests.

### Class E3 Steel Materials

Steel materials for which it cannot be demonstrated they were

- i) manufactured in accordance with any of the Acceptable Materials Specifications listed in Appendix A; nor
- ii) manufactured in accordance with an Acceptable Quality Assurance System.

Hence, any steel material which cannot be demonstrated to be either Class E1 Steel Material or Class E2 Steel Material will be classified as Class E3 Steel Material, and the nominal value of yield strength of the steel material is limited to 170 N/mm² for structural design; no additional material test is needed in general. However, the design yield strength of the steel material may be increased if additional material tests with sufficient sampling have been conducted for various batches of supply before use.

Table 3.1 summarizes the classification system applying to the various classes of steel materials. It should be noted that a newly defined factor, namely, the material class factor,  $\gamma_{MC}$ , is adopted as a result of the classification, and hence, the nominal values of the yield strength and of the ultimate tensile strength of the equivalent steel materials are given as follows:

Nominal value of yield strength

$$f_v = R_{eH} / \gamma_{MC}$$
 (Equation 3.1)

• Nominal value of ultimate tensile strength

$$f_u = R_m / \gamma_{MC}$$
 (Equation 3.2)

where R<sub>eH</sub> is the minimum yield strength to product standards;

R<sub>m</sub> is the ultimate tensile strength to product standards; and

 $\gamma_{MC}$  is the material class factor given in Table 3.1.

#### It should be noted that

a) Plastic analysis and design is permitted for Classes E1 and E2 Steel Materials assuming yield strengths not larger than 460 N/mm<sup>2</sup>.

b) For Classes E1 and E2 Steel Materials with yield strengths larger than 460 N/mm² but smaller than or equal to 690 N/mm², design rules given in EN 1993-1-12 should be used.

c) Only elastic analysis and design should be used for Class E3 Steel Materials.

Table 3.1 Classification system for various classes of steel materials

| Nominal                      | Class | Compliance                                      | Compliance                                   | Additional        | Material class factor, $\gamma_{\text{MC}}$ for  |                                                    |
|------------------------------|-------|-------------------------------------------------|----------------------------------------------|-------------------|--------------------------------------------------|----------------------------------------------------|
| yield<br>strength<br>(N/mm²) |       | with<br>material<br>performance<br>requirements | with<br>quality<br>assurance<br>requirements | material<br>tests | minimum<br>yield<br>strength,<br>R <sub>eH</sub> | ultimate<br>tensile<br>strength,<br>R <sub>m</sub> |
| ≥ 235                        | E1    | Υ                                               | Υ                                            | N                 | 1.0                                              | 1.0                                                |
| and<br>≤ 690                 | E2    | Υ                                               | N                                            | Υ                 | 1.1                                              | 1.1                                                |
|                              | E3    | N                                               | N                                            | N                 |                                                  |                                                    |

# 3.2.3 Additional material tests required for Class E2 Steel Materials

Table 3.2 summarizes all the additional material tests required for demonstration of conformity of a proposed equivalent steel material in order to achieve classification as a Class E2 Steel Material.

Table 3.2 Additional material tests required for demonstration of conformity

| Material tests | Product forms          | Parameters tested <sup>a</sup> | Reference Standards |
|----------------|------------------------|--------------------------------|---------------------|
| Tensile tests  | Plates                 | Yield strength                 | BS EN ISO 6892-1    |
|                | Sections               | Tensile strength               |                     |
|                | Hollow sections        | Elongation at                  |                     |
|                | Sheet piles            | fracture                       |                     |
|                | Solid bars             |                                |                     |
|                | Strips for cold formed |                                |                     |
|                | open sections          |                                |                     |
|                | Strips for cold formed |                                |                     |
|                | profiled sheets        |                                |                     |
|                | Stud connectors        |                                |                     |
|                | Bolts                  |                                |                     |
| Charpy         | Plates                 | Impact energy                  | BS EN ISO 148-1     |
| impact tests   | Sections               |                                |                     |
|                | Hollow sections        |                                |                     |
| Hardness       | Bolts                  | Brinell hardness               | BS EN ISO 6506-1    |
| Tests          | Nuts                   | Vickers hardness               | BS EN ISO 6507-1    |
|                | Washers                | Rockwell hardness              | BS EN ISO 6508-1    |
| Proof load     | Nuts                   | Proof load stress              | BS EN ISO 898-2     |
| Tests          |                        |                                |                     |
| All-weld       | Welding consumables    | Yield strength                 | BS EN ISO 15792-1   |
| metal tests    |                        | Tensile strength               |                     |
|                |                        | Elongation at                  |                     |
|                |                        | fracture                       |                     |
|                |                        | Impact energy                  |                     |
| Chemical       | Plates                 | Carbon content <sup>b</sup> ,  | BS EN ISO 14284     |
| Analysis       | Sections               | Carbon Equivalent              |                     |
|                | Hollow sections        | Value <sup>b</sup> ,           |                     |
|                | Sheet piles            | Sulphur content <sup>b</sup> , |                     |
|                | Solid bars             | Phosphorous                    |                     |
|                | Strips for cold formed | content <sup>b</sup> ,         |                     |
|                | open sections          | and others <sup>c</sup>        |                     |
|                | Strips for cold-formed |                                |                     |
|                | profiled sheets        |                                |                     |
|                | Bolts                  |                                |                     |

#### It should be noted that

a. All the parameters tested should be in compliance with the material performance requirements given in the relevant acceptable materials specifications.

b. When compared with the limits specified for ladle analysis, limits for product analysis shall be :-

0.03 % higher for carbon content;

0.04 % higher for carbon equivalent value;

0.01 % higher for each of sulphur and phosphorous contents.

c. The contents of the following elements should also be determined and recorded:-

Silicon (Si), Manganese (Mn), Copper (Cu), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al), Niobium (Nb), Titanium (Ti), Vanadium (V), Nitrogen (N) and any other element intentionally added.

As the inspection frequencies, the sampling sizes and the number of tests for each parameter depend on many factors, such as delivery conditions and supply, the structural applications of the steel materials as well as quality assurance requirements and relevant local regulations on the use of equivalent steel materials, it is not practical to provide general recommendations on the programme of material testing. Nevertheless, the practice of quality control on the use of equivalent steel materials adopted by regulatory authorities in a number of countries and cities in Asia is provided in Appendix C for easy reference. It is advisable to seek recommendations from these regulatory authorities for specific additional material tests requirements.

# 3.2.4 Steel materials with yield strengths larger than 690 N/mm<sup>2</sup>

High strength steel materials with yield strengths larger than 690 N/mm² are classified as Class UH Steel Materials provided that full compliance with all the material performance and the quality assurance requirements to relevant European steel materials specifications is demonstrated during their manufacturing processes. Intensive routine testing should be conducted according to relevant materials specifications whilst the manufacturing process should be demonstrated as operating effectively under a Certified Factory Control Production scheme.

In general, high strength steel materials often offer structural advantages for heavily loaded structures, especially in the case of ultimate limit state design, but there can only be a limited improvement in its resistance to member buckling. Their use makes no improvement to the ability to meet serviceability limit states such as deflection, fatigue etc..

It should be noted that the design provisions in EN 1993 on the use of Class UH Steel Materials are rather limited in extent. Hence, their use in steel construction should be undertaken with caution, and approval from regulatory authorities should be sought. In general, these steel materials are used in bolted members under tension in the form of tie rods or bars, etc.. In these cases, the responsible engineer should provide full justification for the proposed use to the regulatory authority, and also provide a demonstration of compliance with all material performance and quality assurance requirements.

# 3.3 Material Performance Requirements to European Steel Materials Specifications

The essential material performance requirements for a wide range of product forms are given in this section, and Table 3.3 presents all the product forms covered in this section.

**Table 3.3** Product forms

| Material<br>type     | Material requirements | Product<br>form                            | Description                                                                                                                          |
|----------------------|-----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Structural steels    | Table MR1             | Plates                                     | Hot rolled uncoated steel plates with a minimum thickness of 3 mm, supplied flat or pre-curved in any shape as required              |
|                      | Table MR2             | Sections                                   | Hot rolled open sections including universal beams, columns, joists, channels, angles and tees as well as bearing piles              |
|                      | Table MR3             | Hollow sections                            | Hot finished and cold formed hollow sections of circular, square or rectangular forms                                                |
|                      | Table MR4             | Sheet piles                                | Hot rolled and cold formed sheet piles, and interlocking pipe piles                                                                  |
|                      | Table MR5             | Solid bars                                 | Hot rolled flat, square and circular steel bars with solid cross-sections                                                            |
|                      | Table MR6             | Strips for cold<br>formed open<br>sections | Hot rolled uncoated or galvanized strips with a thickness in the range of 0.6 to 8 mm for manufacturing of cold formed open sections |
| Thin gauge strips    | Table MR7             | Strips for cold formed profiled sheetings  | Hot rolled galvanized strips with a thickness in the range of 0.35 to 1.5 mm for manufacturing of cold formed profiled sheetings     |
| Connection materials | Table MR8             | Stud<br>connectors                         | Stud connectors for transferring shear resistances at the steel-concrete interfaces of composite structures                          |
|                      | Table MR9             | Non-preloaded<br>bolted<br>assemblies      | ISO metric hexagon bolts, nuts and washers for non-preloaded (or bearing) bolted connections                                         |
|                      | Table MR10            | Preloaded<br>bolted<br>assemblies          | ISO metric hexagon bolts, nuts and washers for preloaded (or non-slip) bolted connections                                            |
|                      | Table MR11            | Welding<br>consumables                     | Electrodes, wires, rods and fluxes                                                                                                   |

Compliance with these material performance requirements is one of the two essential selection principles on the equivalence of those steel materials which are not manufactured to European steel materials specifications. However, it should be noted that equivalent steel materials should be manufactured, in the first place, to a national standard, and preferably one of the following national standards:

- a) American standards,
- b) Japanese standards,
- c) Australian/New Zealand standards,
- d) Chinese standards, and
- e) Russian standards.

At the same time, they should also meet the relevant material performance requirements of the European steel materials specifications as summarized in Tables MR1 to 11 given in this section.

#### 3.3.1 Structural steels

Equivalent steel materials for structural steels as specified in EN 1993-1 should be manufactured to a national standard. Meanwhile, they should also meet the relevant material requirements as specified in Sections 3.3.1.1 to 3.3.1.11.

# 3.3.1.1 Plates

This section covers hot rolled uncoated steel plates with a minimum thickness of 3 mm which are supplied either flat or pre-curved as required. Steel for cold formed sections and sheetings is not within the scope of this section. References for material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-1, BS EN 1993-1-10, BS EN 1993-1-12, BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5, BS EN 10025-6, BS EN 10029 and BS EN 10051 and BS EN 10164.

# Table MR1 Material requirements for plates

# a) Geometrical specifications for plates

| Dimension | $3 \le t \le 150 \text{ mm}$                                                          |
|-----------|---------------------------------------------------------------------------------------|
|           | Deviation in thickness: $\pm 2$ mm or within a tolerance of $\pm 15\%$ for thin steel |
|           | plates.                                                                               |
| Mass      | 7850 kg/m³, limited by dimensional tolerance.                                         |

# b) Mechanical specifications for plates

| Strength (N/mm²)             | $235 \le R_{eH} \le 690$                                                   |                                |
|------------------------------|----------------------------------------------------------------------------|--------------------------------|
|                              | $300 \le R_m \le 1000$                                                     |                                |
| Ductility                    | $\epsilon_{f} \! \geq \! 15\%$ and $R_{m} \! / R_{eH} \! \geq \! 1.10$ for | $R_{eH} \le 460$ ;             |
|                              | $\epsilon_{f} \geq$ 10% and $R_{m}$ / $R_{eH} \geq$ 1.05 for               | $460 < R_{\text{eH}} \leq 690$ |
| Impact toughness             | ≥ 27 J at specific temperatures.                                           |                                |
| Through thickness properties | To be specified to BS EN 1993-1-10 and BS                                  | EN 10164, if required.         |

# c) Chemical specifications for plates based on ladle analysis

| Nominal value of yield |      | Maximum co | ntent (% by mass) |      |
|------------------------|------|------------|-------------------|------|
| strength (N/mm²)       | С    | P*         | S                 | CEV  |
| 235                    | 0.26 | 0.045      | 0.050             | 0.40 |
| 275                    | 0.26 | 0.045      | 0.050             | 0.44 |
| 355                    | 0.26 | 0.045      | 0.050             | 0.49 |
| 420                    | 0.26 | 0.040      | 0.050             | 0.52 |
| 460                    | 0.26 | 0.040      | 0.050             | 0.55 |
| 500                    | 0.26 | 0.040      | 0.030             | 0.70 |
| 550**                  | 0.26 | 0.030      | 0.020             | 0.83 |
| 620**                  | 0.26 | 0.030      | 0.020             | 0.83 |
| 690**                  | 0.26 | 0.030      | 0.020             | 0.83 |

<sup>\*</sup> For certain weathering steel, the maximum phosphorous content shall be allowed up to 0.15%.

<sup>\*\*</sup> For guenched and tempered steel only.

#### 3.3.1.2 **Sections**

This section covers hot rolled open sections including universal beams, columns, joists, channels, angles and tees as well as bearing piles. References to material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-1, BS EN 1993-1-10, BS EN 10024, BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5, BS EN 10034, BS EN 10055, BS EN 10056-2, BS EN 10164 and BS EN 10279.

# Table MR2 Material requirements for sections

# a) Geometrical specifications for sections

| Dimension | 3 ≤ t ≤ 63 mm                                                                                  |  |  |
|-----------|------------------------------------------------------------------------------------------------|--|--|
|           | Deviation in section size: $\pm 4$ mm or within a tolerance of $\pm 3\%$ .                     |  |  |
|           | Deviation in thickness: $\pm 2$ mm or within a tolerance of $\pm 15\%$ for                     |  |  |
|           | thin steel plate.                                                                              |  |  |
| Mass      | 7850 kg/m <sup>3</sup> , in general, the mass of a batch or piece shall be within $\pm 4\%$ of |  |  |
|           | the calculated mass.                                                                           |  |  |
|           | For section depth of channels $\leq$ 125, $\pm$ 6%.                                            |  |  |
|           | For section depth of channels > 125, $\pm 4\%$ .                                               |  |  |

# b) Mechanical specifications for sections

| Strength (N/mm²)             | $235 \le R_{eH} \le 500 \\ 300 \le R_m \le 800$                                                                                                                         |            |                                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|
| Ductility                    | $\epsilon_{f}\!\geq 15\% \text{ and } R_{\text{m}} \ / \ R_{\text{eH}} \!\geq 1.10$ $\epsilon_{f}\!\geq 10\% \text{ and } R_{\text{m}} \ / \ R_{\text{eH}} \!\geq 1.05$ | for<br>for | $R_{eH} \le 460$ ; $460 < R_{eH} \le 500$ |
| Impact toughness             | ≥ 27 J at specific temperatures.                                                                                                                                        |            |                                           |
| Through thickness properties | Nil.                                                                                                                                                                    |            |                                           |

# c) Chemical specifications for sections based on ladle analysis

| Nominal value of yield | Maximum content (% by mass) |       |       |      |
|------------------------|-----------------------------|-------|-------|------|
| strength (N/mm²)       | С                           | P*    | S     | CEV  |
| 235                    | 0.26                        | 0.045 | 0.045 | 0.40 |
| 275                    | 0.26                        | 0.045 | 0.045 | 0.44 |
| 355                    | 0.26                        | 0.045 | 0.045 | 0.49 |
| 420                    | 0.26                        | 0.040 | 0.040 | 0.52 |
| 460                    | 0.26                        | 0.040 | 0.040 | 0.55 |
| 500                    | 0.26                        | 0.035 | 0.035 | 0.49 |

<sup>\*</sup> For certain weathering steel, the maximum phosphorous content shall be allowed up to 0.15 %.

#### 3.3.1.3 Hollow sections

This section covers hot finished and cold formed hollow sections of circular, square and rectangular forms. References to material performance requirements in this section include, in alphanumerical order, BS 7668, BS EN 1993-1-1, BS EN 1993-1-10, BS EN 10210-1, BS EN 10210-2, BS EN 10219-1 and BS EN 10219-2.

# Table MR3 Material requirements for hollow sections

# a) Geometrical specifications for hollow sections

| Dimension | $3 \le t \le 80 \text{ mm}$<br>Deviation in section size:<br>Deviation in thickness: | $\pm 2\%$ . $\pm 2$ mm or within a tolerance of $\pm 15\%$ for thin steel plate. |
|-----------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|           |                                                                                      | steer plate.                                                                     |
| Mass      | $7850 \text{kg/m}^3$ , $\pm 6\%$                                                     |                                                                                  |

# b) Mechanical specifications for hollow sections

| Strength (N/mm²)             | $235 \leq R_{\text{eH}} \leq 460$ |
|------------------------------|-----------------------------------|
|                              | $300 \le R_m \le 750$             |
| Ductility                    | $\epsilon_{f} \ge 15\%$ ;         |
|                              | $R_{m}/R_{eH} \ge 1.10$           |
| Impact toughness             | ≥ 27 J at specific temperatures.  |
| Through thickness properties | Nil.                              |

# c) Chemical specifications for hot finished hollow sections based on ladle analysis

| Nominal value of          |                    | Maximum cont     | ent (% by mass)       |            |
|---------------------------|--------------------|------------------|-----------------------|------------|
| yield strength<br>(N/mm²) | С                  | P*               | S                     | CEV        |
| 235                       | 0.24               | 0.040            | 0.040                 | 0.44       |
| 275                       | 0.24               | 0.040            | 0.040                 | 0.48       |
| 355                       | 0.24               | 0.035            | 0.035                 | 0.53       |
| 420                       | 0.24               | 0.035            | 0.035                 | 0.52       |
| 460                       | 0.24               | 0.035            | 0.035                 | 0.55       |
| * For certain weather     | ing steel, the max | imum phosphorous | content shall be allo | owed up to |
| 0.15 %.                   |                    |                  |                       |            |

# d) Chemical specifications for cold formed hollow sections based on ladle analysis

| Maximum content (% by mass) |                      |                                                                                              |                                                                                                                                                                                                    |
|-----------------------------|----------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                           | P*                   | S                                                                                            | CEV                                                                                                                                                                                                |
| 0.24                        | 0.040                | 0.040                                                                                        | 0.37                                                                                                                                                                                               |
| 0.24                        | 0.040                | 0.040                                                                                        | 0.40**                                                                                                                                                                                             |
| 0.24                        | 0.035                | 0.035                                                                                        | 0.48**                                                                                                                                                                                             |
| 0.24                        | 0.035                | 0.035                                                                                        | 0.43                                                                                                                                                                                               |
| 0.24                        | 0.035                | 0.035                                                                                        | 0.53**                                                                                                                                                                                             |
|                             | 0.24<br>0.24<br>0.24 | C     P*       0.24     0.040       0.24     0.040       0.24     0.035       0.24     0.035 | C         P*         S           0.24         0.040         0.040           0.24         0.040         0.040           0.24         0.035         0.035           0.24         0.035         0.035 |

<sup>\*</sup> For certain weathering steel, the maximum phosphorous content shall be allowed up to 0.15 %.

<sup>\*\*</sup> If thermo-mechanical rolling is used, the maximum CEV allowed shall be reduced by 10%.

# 3.3.1.4 Sheet piles

This section covers hot rolled and cold formed sheet piles, and interlocking pipe piles. References to material performance requirements in this section include, in alphanumerical order, BS EN 10051, BS EN 10248-1, BS EN 10248-2, BS EN 10249-1 and BS EN 10249-2.

# Table MR4 Material requirements for sheet piles

# a) Geometrical specifications for sheet piles

| Dimension | t ≤ 25 mm                                                                             |
|-----------|---------------------------------------------------------------------------------------|
|           | Deviation in cross-sectional dimension:                                               |
|           | $\pm$ 0.5mm or with a tolerance of $\pm$ 10% for thin steel plates with t $\leq$ 5mm. |
| Mass      | 7850 kg/m³, ± 3%                                                                      |

# b) Mechanical specifications for sheet piles

| Strength (N/mm²)             | $235 \le R_{eH} \le 460$<br>$300 \le R_m \le 750$                                           |
|------------------------------|---------------------------------------------------------------------------------------------|
| Ductility                    | $\begin{aligned} \epsilon_f &\geq 15\% \; ; \\ R_m \; / \; R_{eH} &\geq 1.10 \end{aligned}$ |
| Impact toughness             | Nil.                                                                                        |
| Through thickness properties | Nil.                                                                                        |

# c) Chemical specifications for sheet piles based on ladle analysis

| Nominal value of yield                                                                       | Maximum content (% by mass) |      |      |      |
|----------------------------------------------------------------------------------------------|-----------------------------|------|------|------|
| strength (N/mm²)                                                                             | С                           | P*   | S    | CEV  |
| 235 ~ 460                                                                                    | 0.25                        | 0.05 | 0.05 | 0.48 |
| For certain weathering steel, the maximum phosphorous content shall be allowed up to 0.15 %. |                             |      |      |      |

#### 3.3.1.5 Solid bars

This section covers hot rolled flat, square and circular steel bars with solid cross-sections. References to material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-1, BS EN 1993-1-10, BS EN 1993-1-12, BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5, BS EN 10025-6, BS EN 10058, BS EN 10059 and BS EN 10060.

# Table MR5 Material requirements for solid bars

# a) Geometrical specifications for solid bars

| Dimension | ≤ 150 mm in dimensions for solid bars with square and rectangular cross-sections |                                                                        |
|-----------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|
|           | $\leq$ 250 mm in diameter for solid bars with c                                  | circular cross-sections                                                |
|           | Deviation in cross-sectional dimension:                                          | $\pm$ 0.5mm or with a tolerance of $\pm$ 10% for small cross sections. |
| Mass      | 7850 kg/m³; ±3%                                                                  |                                                                        |

# b) Mechanical specifications for solid bars

| Strength (N/mm²)             | $\begin{array}{c} 235 \leq R_{eH} \leq 690 \\ 300 \leq R_{m} \leq 1000 \end{array}$                                                                               |            |                                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|
| Ductility                    | $\epsilon_{\text{f}}\!\geq 15\%$ and $R_{\text{m}}$ / $R_{\text{eH}}\!\geq 1.10$ $\epsilon_{\text{f}}\!\geq 10\%$ and $R_{\text{m}}$ / $R_{\text{eH}}\!\geq 1.05$ | for<br>for | $R_{eH} \le 460$ ; $460 < R_{eH} \le 690$ |
| Impact toughness             | $\geq$ 27 J at specific temperatures.                                                                                                                             |            |                                           |
| Through thickness properties | Nil.                                                                                                                                                              |            |                                           |

# c) Chemical specifications for solid bars based on ladle analysis

| Nominal value of yield | Maximum content (% by mass) |       |      |
|------------------------|-----------------------------|-------|------|
| strength (N/mm²)       | P*                          | S     | CEV  |
| 235                    | 0.045                       | 0.050 | 0.40 |
| 275                    | 0.045                       | 0.050 | 0.44 |
| 355                    | 0.045                       | 0.050 | 0.49 |
| 420                    | 0.040                       | 0.050 | 0.52 |
| 460                    | 0.040                       | 0.050 | 0.55 |
| 500                    | 0.040                       | 0.030 | 0.70 |
| 550**                  | 0.030                       | 0.020 | 0.83 |
| 620**                  | 0.030                       | 0.020 | 0.83 |
| 690**                  | 0.030                       | 0.020 | 0.83 |

<sup>\*</sup> For certain weathering steel, the maximum phosphorous content shall be allowed up to 0.15 %.

<sup>\*\*</sup> For quenched and tempered steel only.

# 3.3.1.6 Strips for cold formed open sections

This section covers hot rolled uncoated or galvanized strips with a maximum thickness of 8 mm for manufacturing of cold formed open sections, such as plain or lipped channels and zeds for building envelopes. References for material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-3, BS EN 1993-1-12, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10268, BS EN 10346, BS EN 10149-2, BS EN 10149-3, BS EN 10051, and BS EN 10143.

# Table MR6 Material requirements for cold formed open sections

a) Geometrical specifications for strips for cold formed open sections

| Dimension | $0.6 \le t \le 8 \text{ mm}$<br>Deviation in actual thickness: | $\pm 0.3$ mm or with a tolerance of $\pm 15\%$ for thin strips. |
|-----------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Mass      | 7850kg/m³, limited by dimensional tolerance.                   |                                                                 |

# b) Mechanical specifications for strips for cold formed open sections

| Strength (N/mm²)             | $200 \le R_{eH} \le 700 \\ 250 \le R_{m} \le 1000$                                                                                                                |                                                      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Ductility                    | $\epsilon_{\text{f}}\!\geq 15\%$ and $R_{\text{m}}$ / $R_{\text{eH}}\!\geq 1.10$ $\epsilon_{\text{f}}\!\geq 10\%$ and $R_{\text{m}}$ / $R_{\text{eH}}\!\geq 1.05$ | for $R_{eH} \le 460$ ;<br>for $460 < R_{eH} \le 700$ |
| Impact toughness             | Nil.                                                                                                                                                              |                                                      |
| Through thickness properties | Nil.                                                                                                                                                              |                                                      |

#### c) Chemical specifications for strips for cold formed open sections based on ladle analysis

| Nominal value of yield | Maximum content (% by mass) |      |      |      |
|------------------------|-----------------------------|------|------|------|
| strength (N/mm²)       | С                           | Р    | S    | CEV  |
| 200 ~ 355              | 0.25                        | 0.10 | 0.05 | 0.45 |
| 420 ~ 550              | 0.25                        | 0.10 | 0.05 | -    |
| 600 ~ 700              | 0.15                        | 0.03 | 0.02 | -    |

Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and should be referred to BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10149-2, BS EN 10149-3, BS EN 10268 and BS EN 10346.

## 3.3.1.7 Strips for cold formed profiled sheetings

This section covers hot rolled galvanized strips with thicknesses ranging from 0.43 to 1.5 mm for the manufacture of cold formed profiled sheetings in metal roof and composite slab construction. References to material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-3, BS EN 1993-1-12, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10268, BS EN 10346, BS EN 10149-2, BS EN 10149-3, BS EN 10051 and BS EN 10143.

# Table MR7 Material requirements for cold formed profiled sheetings

a) Geometrical specifications for strips for cold formed profiled sheetings

| Dimensions | $0.35 \le t \le 1.5 \text{ mm}$              |                                                |
|------------|----------------------------------------------|------------------------------------------------|
|            | Deviation in actual thickness:               | $\pm 0.1$ mm or with a tolerance of $\pm 15\%$ |
|            |                                              | for thin strips.                               |
| Mass       | 7850kg/m³, limited by dimensional tolerance. |                                                |

b) Mechanical specifications for strips for cold formed profiled sheetings

| Strength (N/mm²)             | $200 \le R_{eH} \le 700$<br>$250 \le R_m \le 1000$                                                                                                                                                                                                                                                                                             |                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Ductility                    | $\begin{split} \epsilon_{\text{f}} &\geq 15\% \text{ ; } R_{\text{m}} \text{ / } R_{\text{eH}} \geq 1.10 \text{ and } \epsilon_{\text{u}} \geq 15  \epsilon_{\text{y}} \\ \epsilon_{\text{f}} &\geq 10\% \text{ ; } R_{\text{m}} \text{ / } R_{\text{eH}} \geq 1.05 \text{ and } \epsilon_{\text{u}} \geq 15  \epsilon_{\text{y}} \end{split}$ | $\begin{array}{ll} \text{for} & R_{\text{eH}} < 460 \ ; \\ \text{for} & 460 \leq R_{\text{eH}} \leq 700 \end{array}$ |
| Impact toughness             | Nil.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |
| Through thickness properties | Nil.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |

<sup>\*</sup> Note: When the yield point is not pronounced, the value of  $R_e$  should be taken as the 0.2% proof strength,  $R_{p0.2}$ . If the yield strength is pronounced, the value of  $R_e$  should be taken as the lower yield strength  $R_{eL}$  according to the product standard.

# c) Chemical specifications for strips for cold formed profiled sheetings based on ladle analysis

| Nominal value of yield | Maximum content (% by mass) |      |      |      |
|------------------------|-----------------------------|------|------|------|
| strength (N/mm²)       | С                           | Р    | S    | CEV  |
| 200 ~ 355              | 0.25                        | 0.10 | 0.05 | 0.45 |
| 420 ~ 550              | 0.25                        | 0.10 | 0.05 | -    |
| 600 ~ 700              | 0.15                        | 0.03 | 0.02 | -    |

Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and should be referred to BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10149-2, BS EN 10149-3, BS EN 10268 and BS EN 10346.

#### 3.3.1.8 Stud connectors

This section covers stud connectors which are used to transfer shear resistances across the steel-concrete interfaces of composite members. References to material performance requirements in this section include, in alphanumerical order, BS EN 1994-1-1, BS EN ISO 13918, and BS EN ISO 898-1.

# **Table MR8** Material requirements for stud connectors

# a) Geometrical specifications for stud connectors

| Shank diameter        | 10 to 25 mm                                     |
|-----------------------|-------------------------------------------------|
| Dimensional tolerance | In accordance with the corresponding standards. |

The head diameter should be at least 1.5 times the shank diameter whereas the head depth should be a least 0.4 times the shank diameter.

# b) Mechanical specifications for stud connectors

| Nominal value of yield strength (N/mm²) | $240 \le R_e^* \le 1100$ $R_m \ge 400$ |
|-----------------------------------------|----------------------------------------|
| Ductility                               | $\epsilon_f \geq 14\%$                 |

\* Note: When the yield point is not pronounced, the value of  $R_e$  should be taken as the 0.2% proof strength,  $R_{p0.2}$ . If the yield strength is pronounced, the value of  $R_e$  should be taken as the lower yield strength  $R_{eL}$  according to the product standard.

#### 3.3.1.9 Non-preloaded bolted assemblies

This section covers non-preloaded bolts and the recommended combinations of matching components in non-preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for non-preloaded (or bearing) bolted connections with bolts, plain washers with or without chamfers. References to material performance requirements in this section include, in alphanumerical order, BS 4190, BS 7419, BS EN 1993-1-8, BS EN ISO 898-1, BS EN ISO 898-3, BS EN ISO 4014, BS EN ISO 4016, BS EN ISO 4017, BS EN ISO 4018, BS EN ISO 4032, BS EN ISO 4033, BS EN ISO 4034, BS EN ISO 7091, BS EN ISO 7092, BS EN ISO 7093-1, BS EN ISO 7093-2, and BS EN ISO 7094.

#### Table MR9 Material requirements for non-preloaded bolted assemblies

a) Geometrical specifications for non-preloaded bolted assemblies

| Thread size | 5 ~ 68 mm                                       |
|-------------|-------------------------------------------------|
| Dimensions  | In accordance with the corresponding standards. |

# b) Mechanical specifications for non-preloaded bolts

| Strength   | Grade of bolts       | R <sub>m</sub>                            | R <sub>e</sub> * |  |  |
|------------|----------------------|-------------------------------------------|------------------|--|--|
| $(N/mm^2)$ | 4.6                  | 400                                       | 240              |  |  |
|            | 8.8                  | 800                                       | 640              |  |  |
|            | 10.9                 | 1000                                      | 900              |  |  |
|            | 12.9                 | 1200                                      | 1080             |  |  |
| Ductility  | $\epsilon_f \ge 8\%$ | $\epsilon_f \ge 8\%$                      |                  |  |  |
|            | Reduction in area a  | Reduction in area after fracture, A ≥ 44% |                  |  |  |

<sup>\*</sup> Note: When the yield point is not pronounced, the value of  $R_e$  should be taken as the 0.2% proof strength,  $R_{p0.2}$ . If the yield strength is pronounced, the value of  $R_e$  should be taken as the lower yield strength  $R_{eL}$  according to the product standard.

# c) Hardness requirements for non-preloaded bolts

|                | Range of hardness        |                          |                                   |
|----------------|--------------------------|--------------------------|-----------------------------------|
| Grade of bolts | Vickers hardness<br>(HV) | Brinell hardness<br>(HB) | Rockwell hardness<br>(HRB or HRC) |
| 4.6            | 120 – 220                | 114 – 209                | 67 – 95 (HRB)                     |
| 8.8            | 250 – 335                | 238 – 318                | 22 – 34 (HRC)                     |
| 10.9           | 320 – 380                | 304 – 361                | 32 – 39 (HRC)                     |
| 12.9           | 385 – 435                | 380 – 429                | 39 – 44 (HRC)                     |

#### d) Chemical specifications for non-preloaded bolts based on product analysis

| Cuada of halts | Maximum content (% by mass) |       |  |
|----------------|-----------------------------|-------|--|
| Grade of bolts | Р                           | S     |  |
| 4.6*           | 0.050                       | 0.060 |  |
| 8.8 and 10.9** | 0.050                       | 0.060 |  |
| 12.9           | 0.025                       | 0.025 |  |

<sup>\*</sup> Free cutting steel may be allowed for these grades with the following maximum contents: Sulphur 0.34 %, Phosphorous 0.11 % and Lead 0.35 %.

<sup>\*\*</sup> In case of plain carbon boron steel with a carbon content below 0.25% (cast analysis), the minimum manganese content should be 0.6% for property class 8.8, and 0.7% for property class 10.9.

# e) Recommended grades of nuts in non-preloaded assemblies

| Grade of nuts | Proof load stress<br>(N/mm²) | Compatible bolt grades |
|---------------|------------------------------|------------------------|
| 4             | 400                          | ≤ 4.8                  |
| 8             | 800                          | ≤ 8.8                  |
| 10            | 1000                         | ≤ 10.9                 |
| 12            | 1200                         | ≤ 12.9                 |

# f) Hardness requirements for nuts in non-preloaded assemblies

|               | Range of hardness        |                          |                            |
|---------------|--------------------------|--------------------------|----------------------------|
| Grade of nuts | Vickers Hardness<br>(HV) | Brinell hardness<br>(HB) | Rockwell hardness<br>(HRC) |
| ≤ 8           | ≤ 310                    | ≤ 302                    | ≤ 30                       |
| 10            | ≤ 370                    | ≤ 353                    | ≤ 36                       |
| 12            | ≤ 395                    | ≤ 375                    | ≤ 39                       |

# g) Chemical specifications for nuts in non-preloaded assemblies based on product analysis

|               | Maximum content (% by mass) |       |       |
|---------------|-----------------------------|-------|-------|
| Grade of nuts | С                           | Р     | S     |
| ≤ 6           | 0.50                        | 0.110 | 0.150 |
| 8             | 0.58                        | 0.060 | 0.150 |
| 10 and 12     | 0.58                        | 0.048 | 0.058 |

Free cutting steel may be allowed for these grades with the following maximum contents: Sulphur 0.34 %, Phosphorus 0.11%, and Lead 0.35 %.

#### 3.3.1.10 Preloaded bolted assemblies

This section covers preloaded bolts and the recommended combinations of matching components in preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for preloaded (or non-slip) bolted connections. References to material performance requirements in this section include, in alphanumerical order, BS EN 1993-1-8, BS EN 14399-1, BS EN 14399-2, BS EN 14399-3, BS EN 14399-4, BS EN 14399-5, BS EN 14399-5, BS EN 14399-9, BS EN 150 898-1 and BS EN ISO 898-2.

# Table MR10 Material requirements for preloaded bolted assemblies

a) Geometrical specifications for preloaded bolted assemblies

| Thread size | 12 to 36mm                                      |
|-------------|-------------------------------------------------|
| Dimensions  | In accordance with the corresponding standards. |

Bolts with thread sizes should be in the range of 12 to 36 mm with plain washers with or without chamfers, and tension indicating washers.

## b) Mechanical specifications for preloaded bolts

| Strength         | Grade of Wbolts       | $R_{m}$ | R <sub>e</sub> * |  |
|------------------|-----------------------|---------|------------------|--|
| (N/mm²)          | 8.8                   | 800     | 640              |  |
|                  | 10.9                  | 1000    | 900              |  |
|                  | 12.9                  | 1200    | 1080             |  |
| Ductility        | $\epsilon_f \geq 8\%$ |         |                  |  |
| Impact toughness | ≥ 27 J at -20 °C.     |         |                  |  |

Note: When the yield point is not pronounced, the value of  $R_e$  should be taken as the 0.2% proof strength,  $R_{p0.2}$ . If the yield strength is pronounced, the value of  $R_e$  should be taken as the lower yield strength  $R_{eL}$  according to the product standard.

# c) Hardness requirements for preloaded bolts

|                | Range of hardness        |                          |                            |
|----------------|--------------------------|--------------------------|----------------------------|
| Grade of bolts | Vickers hardness<br>(HV) | Brinell hardness<br>(HB) | Rockwell hardness<br>(HRC) |
| 8.8            | 250 – 335                | 238 – 318                | 22 – 34                    |
| 10.9           | 320 – 380                | 304 – 361                | 32 – 39                    |
| 12.9           | 385 – 435                | 380 – 429                | 39 – 44                    |

# d) Chemical specifications for preloaded bolts based on product analysis

| Grade of bolts | Maximum content (% by mass) |       |  |
|----------------|-----------------------------|-------|--|
| Grade of boils | P                           | S     |  |
| 4.6*           | 0.050                       | 0.060 |  |
| 8.8 and 10.9** | 0.050                       | 0.060 |  |
| 12.9           | 0.025                       | 0.025 |  |

<sup>\*</sup> Free cutting steel may be allowed for these grades with the following maximum contents: Sulphur 0.34 %, Phosphorous 0.11 % and Lead 0.35 %.

<sup>\*\*</sup> In case of plain carbon boron steel with a carbon content below 0.25% (cast analysis), the minimum manganese content should be 0.6% for property class 8.8, and 0.7% for property class 10.9.

# e) Recommended grades of nuts in preloaded assemblies

| Grade of nuts | Proof load stress<br>(N/mm²) | Compatible bolt grades |
|---------------|------------------------------|------------------------|
| 8             | 800                          | ≤ 8.8                  |
| 10            | 1000                         | ≤ 10.9                 |
| 12            | 1200                         | ≤ 12.9                 |

# f) Hardness requirements for nuts in preloaded assemblies

|               | Range of hardness        |                          |                            |  |  |
|---------------|--------------------------|--------------------------|----------------------------|--|--|
| Grade of nuts | Vickers Hardness<br>(HV) | Brinell hardness<br>(HB) | Rockwell hardness<br>(HRC) |  |  |
| ≤8            | ≤ 310                    | ≤ 302                    | ≤ 30                       |  |  |
| 10            | ≤ 370                    | ≤ 353                    | ≤ 36                       |  |  |
| 12            | ≤ 395                    | ≤ 375                    | ≤ 39                       |  |  |

# g) Chemical specifications for nuts in preloaded assemblies based on product analysis

|               | Ma   | s)   |      |
|---------------|------|------|------|
| Grade of nuts | С    | Р    | S    |
| 8             | 0.58 | 0.06 | 0.15 |
| 10 and 12     | 0.58 | 0.05 | 0.06 |

## 3.3.1.11 Welding consumables

This section covers welding consumables including electrodes, wires, rods and fluxes. The design parameters of welds corresponding to different welding consumable grades are given in Table MR11. References to material performance requirements in this section include, in alphanumerical order, BS EN ISO 14174, BS EN 1993-1-8, BS EN ISO 636, BS EN ISO 2560, BS EN ISO 15792-1, BS EN ISO 15792-2, BS EN ISO 15792-3, BS EN ISO 14171, BS EN ISO 16834, BS EN ISO 17632, BS EN ISO 17633, BS EN ISO 17634, BS EN ISO 18274, BS EN ISO 21952, BS EN ISO 24373, BS EN ISO 24598, BS EN ISO 26304, , BS EN ISO14343 and BS EN ISO 14341.

#### Table MR11 Material requirements for welding consumables

a) Material performance requirements for welding consumables

| Material     | In accordance with the corresponding standards. |
|--------------|-------------------------------------------------|
| performance  |                                                 |
| requirements |                                                 |

# b) Mechanical specifications for welding consumables

| Strength (N/mm²) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|------------------|------------------------------------------------------|
| Ductility        | $\epsilon_f \geq 15\%$                               |
| Impact toughness | ≥ 27 J at specific temperatures.                     |

<sup>\*</sup> Note: When the yield point is not pronounced, the value of  $R_e$  should be taken as the 0.2% proof strength,  $R_{p0.2}$ . If the yield strength is pronounced, the value of  $R_e$  should be taken as the lower yield strength  $R_{eL}$  according to the product standard.

#### 3.4 Quality Assurance Requirements to European Steel Materials Specifications

In general, a steel manufacturer will have already established a form of quality assurance. However, in order to demonstrate compliance with the quality assurance requirements for steel materials equivalent to European steel materials specifications, a steel manufacturer should further establish a Factory Production Control (FPC) System which is essential for demonstrating conformity of the steel material performances with European steel materials specifications. Moreover, in order to demonstrate effective implementation, the FPC System must be certified by an independent qualified certification body. For further information on a FPC Scheme, refer to Appendix B.4 of EN 10025-1.

#### 3.4.1 Factory Production Control System

A steel manufacturer should establish, document and maintain a FPC System to ensure conformity of his steel products with relevant materials specifications. In addition to a quality management system as well as an inspection system, he should carry out regular monitoring at least once a year as well as continuous surveillance. More importantly, he should perform material tests regularly in order to demonstrate full conformity of the proposed steel material with the relevant European materials specifications. All the material tests should be performed in accordance with the material testing standards listed in Section 3.2.3 or other relevant standards.

# 3.4.1.1 Requirements for Factory Production Control System

The steel manufacturer is fully responsible for administrating the effective implementation of a FPC System during the manufacturing process of the steel material. He should draw up detailed technical specifications as well as effective quality assurance schemes which are appropriate to the steel material and the manufacturing process. He should also clearly define specific tasks and associated responsibilities of the tasks among various parties, and keep up-to-date documents defining the FPC System. Key tasks in the FPC System include:

- to identify procedures to demonstrate conformity of the material performances of the steel material at appropriate stages;
- · to identify and record any incident of non-conformity; and
- to identify procedures to correct incidents of non conformity.

The FPC System should achieve an appropriate level of confidence in the conformity of the material performance of the steel material, and this involves:

- documentation of procedures according to various requirements given in relevant technical specifications;
- effective implementation of these procedures;
- recording details of these procedures in operation and their results;
- use of these results to correct any deviation, repair effects of such deviation, correct
  any incident of non-conformity, and if necessary, revise the FPC System to rectify the
  cause of non-conformity.

It should also be noted that FPC procedures include some or all of the following:

- to specify and verify raw materials and constituents of the steel material;
- to conduct material tests on the steel material during manufacturing according to a pre-determined frequency;
- to conduct verification tests on finished products of the steel material according to a frequency which may be pre-determined in technical specifications, and adapted to the product and its conditions of manufacturing.

# 3.4.1.2 Raw materials

The steel manufacturer should ensure that both the specifications of all incoming raw materials and the inspection scheme related to these raw materials are properly documented to ensure their conformity.

#### 3.4.1.3 Equipment

The steel manufacturer should calibrate regularly and inspect all weighing, measuring and testing equipment according to established practice as to procedures, criteria and frequencies. He should also inspect and maintain all manufacturing equipment regularly to ensure that use, wear or failure does not result in product inconsistency in the manufacturing process. Inspection and maintenance should be performed in accordance with the manufacturer's written procedures, and records of inspection and maintenance should be retained for the period defined in the manufacturer's FPC procedures.

#### 3.4.1.4 Verifications and tests

The steel manufacturer should have suitable installations, equipment and personnel which enable him to conduct all necessary verifications and tests. He must calibrate, verify and maintain all measuring and testing equipment in good operating condition to enable him to demonstrate conformity of the steel material performance with its technical specification.

#### 3.4.1.5 Monitoring of conformity

The steel manufacturer should monitor conformity of the steel material at various intermediate as well as the main stages of the manufacturing process. This monitoring of conformity focuses on the product throughout the manufacturing process so that only products which have passed the scheduled intermediate controls and tests are dispatched.

#### 3.4.1.6 Testing with direct and indirect methods

The steel manufacturer should conduct tests in accordance with the test plan, and all of these tests should be carried out in accordance with the methods described in relevant technical specifications. In general, these methods should be direct methods.

However, it is possible in the case of certain characteristics that the prescribed specification allows for a possibility of using indirect test methods if a definite relationship can be established. In such case, indirect test methods may be retained when available and appropriate.

#### 3.4.1.7 Test records

The steel manufacturer should keep test records which provide evidence that the steel material product has been thoroughly tested. These test records should show clearly whether the product has satisfied all the steel material performance requirements. Where the product fails to satisfy any particular requirement, provisions for non-conforming products should apply as in Section 3.4.1.8.

#### 3.4.1.8 Treatment of products which do not conform

If test results show that the product of the steel material does not meet a particular requirement, for example, if the statistical variation of test results exceeds the limits allowed by the technical specification, appropriate corrective action should be taken immediately. Moreover, products or batches of products not conforming should be isolated and properly identified. Once the fault has been corrected, verification against that requirement should be repeated. If products have been delivered before the results are available, a procedure for notifying customers should be established and recorded.

#### 3.4.1.9 Record of verifications and tests

The steel manufacturer should properly record the control results of the FPC System:

- i) product description,
- ii) date of manufacture,
- iii) test method adopted,
- iv) test results and acceptance criteria.

All of these results should be properly recorded. With regard to any result not meeting a requirement of the technical specification, any corrective measure taken to rectify the situation should be clearly documented.

# 3.4.1.10 Traceability

The steel manufacturer should keep full records of individual products or product batches of the steel material, including manufacturing details and characteristics, and keep records of clients. Individual products or batches of products and the related manufacturing details should be completely identifiable and retraceable. However, it should be noted that in certain cases, for example for bulk products, a rigorous traceability is not possible.

Hence, the requirement in the relevant technical specifications should be realistically adapted keeping in view that traceability should be as complete as possible.

# Section 4 Design Parameters for Equivalent Steel Materials

This Chapter presents design data for those steel materials which have demonstrated they meet the material performance and the quality assurance requirements representing the equivalence of steel materials as detailed in Chapter 3. Design parameters of the equivalent steel materials for various product forms are also tabulated in Tables 4.2 to 4.9 to allow direct adoption when designing structural steelwork in accordance with EN 1993 and EN 1994. It should be noted that a detailed technical examination of a large number of material specifications of the five countries of interest had been conducted. Acceptable steel materials specifications and steel grades are given in the "Code of Practice for the Structural Use of Steel" (2005 & 2011) of the Buildings Department of the Government of Hong Kong SAR, and in the "Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3" (2008 & 2012) of the Building and Construction Authority of the Ministry of National Development in Singapore. A full list of acceptable steel materials manufactured to the national materials specifications of the four countries of interest is provided in Appendix A for easy reference.

## 4.1 Product Forms of Equivalent Steel Materials

Table 4.1 presents all the product forms of various classes of equivalent steel materials for easy reference.

Table 4.1 Product forms of various classes of equivalent steel materials

| Class | Steel Materials      | Product forms                                               | Cross-referencing  |
|-------|----------------------|-------------------------------------------------------------|--------------------|
|       | Structural steels    | Plates, sections, hollow sections, sheet piles, solid bars, | 4.2.1<br>Table 4.2 |
|       |                      | strips for cold formed sections                             |                    |
| E1    | Thin gauge strips    | strips for cold formed sheeting                             | 4.2.2, Table 4.3   |
| LI    | Connection materials | stud connectors,                                            | 4.2.3              |
|       |                      | non-preloaded bolted assemblies,                            | Tables 4.4 to 4.7  |
|       |                      | preloaded bolted assemblies,                                |                    |
|       |                      | welding consumables                                         |                    |
|       | Structural steels    | plates, sections, hollow sections,                          | 4.3.1              |
|       |                      | sheet piles, solid bars,                                    | Table 4.8          |
|       |                      | strips for cold formed sections                             |                    |
| E2    | Thin gauge strips    | strips for cold formed sheeting                             | 4.3.2              |
| LZ.   | Connection materials | stud connectors                                             | 4.3.3              |
|       |                      | non-preloaded bolted assemblies                             |                    |
|       |                      | preloaded bolted assemblies                                 |                    |
|       |                      | welding consumables                                         |                    |
|       | Structural steels    | Plates, sections, hollow sections,                          | 4.4.1              |
| E3    |                      | sheet piles, solid bars,                                    | Table 4.9          |
|       |                      | strips for cold formed sections                             |                    |

Refer to Section 3.2.2 for the definitions of the classification of steel materials, and Equations 3.1 and 3.2 for the nominal values of yield and ultimate tensile strengths of the equivalent steel materials to be used in structural calculations.

# 4.2 Design Parameters for Class E1 Equivalent Steel Materials

This section presents the design guidance on Class E1 Steel materials for which compliance with all the material requirements has been demonstrated through **intensive routine testing** conducted during the effective implementation of a certificated **Factory Production Control** system according to European steel materials specifications. The corresponding material class factor  $\gamma_{MC}$  should be taken as 1.0.

#### 4.2.1 Class E1 Structural steels

This section covers the design parameters of Class E1 Structural steels including

- i) hot rolled plates, sections, hollow sections, sheet piles, solid bars,
- ii) hot rolled strips for cold formed sections.

The design parameters of Class E1 Structural steels corresponding to different steel grades of various national steel materials specifications are given in Table 4.2.

Table 4.2a Design parameters of Structural steels to European (EN) specifications

| Grade | Minimum yield strength R <sub>ehm</sub> (N/mm²)<br>for<br>thickness (mm) less than or equal to |                     |           |                      |                      |               |  |  |
|-------|------------------------------------------------------------------------------------------------|---------------------|-----------|----------------------|----------------------|---------------|--|--|
|       | 16                                                                                             | 16 40 63 80 100 150 |           |                      |                      |               |  |  |
| S235  | 235*                                                                                           | 225                 | 215       | 215                  | 215                  | 195           |  |  |
| S275  | 275                                                                                            | 265                 | 255       | 245                  | 235*                 | 225*          |  |  |
| S355  | 355                                                                                            | 345                 | 335       | 325                  | 315*                 | 295*          |  |  |
| S420  | 420                                                                                            | 400                 | 390       | 370* <sup>,</sup> ** | 360* <sup>,</sup> ** | 340*, **      |  |  |
| S460  | 460                                                                                            | 440                 | 430***    | 410***               | 400***               | 380*, **, *** |  |  |
| S500  | 500                                                                                            | 480***              | 460***    | 450***               | 450***               | 450***        |  |  |
| S550  | 550                                                                                            | 550                 | 550***    | 530                  | 530                  | 490           |  |  |
| S620  | 620                                                                                            | 620                 | 620***    | 580                  | 580                  | 560           |  |  |
| S690  | 690                                                                                            | 690                 | 690***    | 650                  | 650                  | 630           |  |  |
| Grade | Tensile strength R <sub>m</sub> (N/mm²) for thickness (mm) less than or equal to               |                     |           |                      |                      |               |  |  |
|       | 16                                                                                             | 40                  | 63        | 80                   | 100                  | 150           |  |  |
| S235  |                                                                                                |                     | 360 ~ 510 |                      |                      | 350 ~ 500     |  |  |
| S275  |                                                                                                |                     | 350 ~ 560 |                      |                      | 350 ~ 480     |  |  |
| S355  | 440 ~ 630 430 ~ 600                                                                            |                     |           |                      |                      |               |  |  |
| S420  | 470 ~ 680 460 ~ 650                                                                            |                     |           |                      |                      |               |  |  |
| S460  | 500 ~ 720 480 ~ 710                                                                            |                     |           |                      |                      |               |  |  |
| S500  |                                                                                                | 590 ~ 770 560 ~ 750 |           |                      |                      |               |  |  |
| S550  |                                                                                                |                     | 640 ~ 820 |                      |                      | 590 ~ 770     |  |  |
| S620  |                                                                                                |                     | 700 ~ 890 |                      |                      | 650 ~ 830     |  |  |
| S690  |                                                                                                |                     | 760 ~ 940 |                      |                      | 710 ~ 900     |  |  |

<sup>\*</sup> For Thermo-mechanical Rolled Weldable Steels, R<sub>eHm</sub> is high and should be refer to EN 10025-4.

<sup>\*\*</sup> For Atmospheric Resistance Steels, R<sub>eHm</sub> is higher and should be refer to EN 10025-5.

<sup>\*\*\*</sup> For High Strength Structural Steels in the Quenched and Tempered Condition, R<sub>eHm</sub> is higher and should be refer to EN 10025-6, and the thickness limit is 50 mm instead of 63 mm.

Table 4.2b Design parameters of Class E1 Structural steels to American (ASTM and API) specifications

| Grade                                                                                                                                                                     | Minimum yield strength R <sub>eH</sub> (N/mm²)<br>for<br>thickness (mm) less than or equal to |                            |                                                                                                          |       |                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|-------|--------------------------------|--|--|--|
|                                                                                                                                                                           | 32                                                                                            | 32 50 65 80                |                                                                                                          |       |                                |  |  |  |
| ASTM structural st                                                                                                                                                        | eels                                                                                          | 1                          | 1                                                                                                        |       |                                |  |  |  |
| 36 [250]                                                                                                                                                                  |                                                                                               |                            | 250                                                                                                      |       |                                |  |  |  |
| 42[290]                                                                                                                                                                   |                                                                                               |                            | 290                                                                                                      |       |                                |  |  |  |
| 50 [345]                                                                                                                                                                  |                                                                                               |                            | 345                                                                                                      |       |                                |  |  |  |
| 55 [380]                                                                                                                                                                  |                                                                                               |                            | 380                                                                                                      |       |                                |  |  |  |
| 60 [415]                                                                                                                                                                  |                                                                                               |                            | 415                                                                                                      |       |                                |  |  |  |
| 65 [450]                                                                                                                                                                  |                                                                                               |                            | 450                                                                                                      |       |                                |  |  |  |
| 70 [485]                                                                                                                                                                  |                                                                                               |                            | 485                                                                                                      |       |                                |  |  |  |
| 100 [690]                                                                                                                                                                 |                                                                                               | 690                        |                                                                                                          | 62    | 20                             |  |  |  |
| API line pipes                                                                                                                                                            |                                                                                               |                            |                                                                                                          |       |                                |  |  |  |
| B [L245]                                                                                                                                                                  |                                                                                               | 2                          | 45                                                                                                       |       | -                              |  |  |  |
| X42 [L290]                                                                                                                                                                |                                                                                               | 2                          | 90                                                                                                       |       | -                              |  |  |  |
| X46 [L320]                                                                                                                                                                |                                                                                               | 3                          | 20                                                                                                       |       | -                              |  |  |  |
| X52 [L360]                                                                                                                                                                |                                                                                               | 3                          | 60                                                                                                       |       | -                              |  |  |  |
| X56 [L390]                                                                                                                                                                |                                                                                               | 3                          | 90                                                                                                       |       | -                              |  |  |  |
| X60 [L415]                                                                                                                                                                |                                                                                               | 4                          | 15                                                                                                       |       | -                              |  |  |  |
| X65 [L450]                                                                                                                                                                |                                                                                               | 4                          | 50                                                                                                       |       | -                              |  |  |  |
| X70 [L485]                                                                                                                                                                |                                                                                               | 4                          | 85                                                                                                       |       |                                |  |  |  |
| Grade                                                                                                                                                                     |                                                                                               |                            | le strength R <sub>m</sub> (N<br>for<br>(mm) less than o                                                 |       |                                |  |  |  |
|                                                                                                                                                                           | 32                                                                                            | 50                         | 65                                                                                                       | 80    |                                |  |  |  |
| ASTM structural st                                                                                                                                                        | eels                                                                                          |                            |                                                                                                          |       | 100                            |  |  |  |
| 36 [250]                                                                                                                                                                  |                                                                                               |                            |                                                                                                          |       |                                |  |  |  |
|                                                                                                                                                                           |                                                                                               |                            | 365 ~ 550                                                                                                |       | 100                            |  |  |  |
| 42[290]                                                                                                                                                                   |                                                                                               |                            | 365 ~ 550<br>415                                                                                         |       | 100                            |  |  |  |
| 42[290]<br>50 [345]                                                                                                                                                       |                                                                                               |                            |                                                                                                          |       | 100                            |  |  |  |
|                                                                                                                                                                           |                                                                                               |                            | 415                                                                                                      |       | 100                            |  |  |  |
| 50 [345]                                                                                                                                                                  |                                                                                               |                            | 415<br>435 ~ 620                                                                                         |       | 100                            |  |  |  |
| 50 [345]<br>55 [380]                                                                                                                                                      |                                                                                               |                            | 415<br>435 ~ 620<br>480 ~ 485                                                                            |       | 100                            |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]                                                                                                                                          |                                                                                               |                            | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520                                                               |       | 100                            |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]                                                                                                     |                                                                                               | 760 ~ 895                  | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690                                                  | 690 ^ |                                |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes                                                                                   |                                                                                               |                            | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760                                     | 690 ^ |                                |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]                                                                       |                                                                                               | 4                          | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760                                     | 690 ^ |                                |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes                                                                                   |                                                                                               | 4                          | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760                                     | 690 ^ |                                |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]<br>X42 [L290]<br>X46 [L320]                                           |                                                                                               | 4<br>4<br>4                | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760<br>15<br>15                         | 690 ^ | · 895                          |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]<br>X42 [L290]<br>X46 [L320]<br>X52 [L360]                             |                                                                                               | 4<br>4<br>4<br>4           | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760<br>15<br>15<br>15<br>35             | 690 ^ | · 895                          |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]<br>X42 [L290]<br>X46 [L320]<br>X52 [L360]<br>X56 [L390]               |                                                                                               | 4<br>4<br>4<br>4           | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760<br>15<br>15<br>35<br>60<br>90       | 690 ^ | -<br>-<br>-                    |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]<br>X42 [L290]<br>X46 [L320]<br>X52 [L360]<br>X56 [L390]<br>X60 [L415] |                                                                                               | 4<br>4<br>4<br>4<br>4<br>5 | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760<br>15<br>15<br>35<br>60<br>90<br>20 | 690 ^ | · 895                          |  |  |  |
| 50 [345]<br>55 [380]<br>60 [415]<br>65 [450]<br>70 [485]<br>100 [690]<br>API line pipes<br>B [L245]<br>X42 [L290]<br>X46 [L320]<br>X52 [L360]<br>X56 [L390]               |                                                                                               | 4<br>4<br>4<br>4<br>5<br>5 | 415<br>435 ~ 620<br>480 ~ 485<br>450 ~ 520<br>450 ~ 690<br>570 ~ 760<br>15<br>15<br>35<br>60<br>90       | 690 ^ | * 895<br>-<br>-<br>-<br>-<br>- |  |  |  |

Table 4.2c Design parameters of Class E1 Structural steels to Japanese (JIS) specifications

|                    | Minimum yield strength R <sub>eH</sub> (N/mm²)<br>for |                  |       |                                                   |     |     |  |  |
|--------------------|-------------------------------------------------------|------------------|-------|---------------------------------------------------|-----|-----|--|--|
| Grade              | thickness (mm) less than or equal to                  |                  |       |                                                   |     |     |  |  |
|                    | 16                                                    | 16 40 75 100 160 |       |                                                   |     |     |  |  |
| JIS structural ste | els                                                   |                  |       |                                                   |     |     |  |  |
| 400                | 245                                                   | 235              | 215   | 215                                               | 205 | 195 |  |  |
| 490                | 325                                                   | 315              | 295   | 295                                               | 285 | 275 |  |  |
| 490Y               | 365                                                   | 355              | 335   | 325                                               | -   | -   |  |  |
| 520                | 365                                                   | 355              | 335   | 325                                               | -   | -   |  |  |
| 570                | 460                                                   | 450              | 430   | 420                                               | -   | -   |  |  |
| JIS s heet piles   |                                                       |                  |       |                                                   |     |     |  |  |
| 295                | 295                                                   |                  |       | -                                                 |     |     |  |  |
| 390                | 390                                                   |                  |       | -                                                 |     |     |  |  |
| 430                | 430                                                   |                  |       | -                                                 |     |     |  |  |
| Grade              |                                                       |                  | fo    | th R <sub>m</sub> (N/mm²)<br>or<br>ss than or equ |     |     |  |  |
|                    | 16                                                    | 40               | 75    | 100                                               | 160 | 200 |  |  |
| JIS structural ste | els                                                   | •                |       | •                                                 |     |     |  |  |
| 400                |                                                       |                  | 400 ′ | ~ 510                                             |     |     |  |  |
| 490                |                                                       | 490 ~ 610        |       |                                                   |     |     |  |  |
| 490Y               |                                                       | 490 ~ 610        |       |                                                   |     |     |  |  |
| 520                |                                                       | 520 ~ 640        |       |                                                   |     |     |  |  |
| 570                |                                                       | 570 ~ 720        |       |                                                   |     |     |  |  |
| JIS s heet piles   |                                                       |                  |       |                                                   |     |     |  |  |
| 295                | 450                                                   |                  |       | -                                                 |     |     |  |  |
| 390                | 490                                                   |                  |       | -                                                 |     |     |  |  |
| 430                | 510                                                   |                  |       | -                                                 |     |     |  |  |

Table 4.2d Design parameters of Class E1 Structural steels to Australian/New Zealand (AS/NZS) specifications

| Grade          | Minimum yield strength R <sub>eH</sub> (N/mm2)<br>for<br>thickness (mm) less than or equal to |           |              |                     |               |     |     |     |
|----------------|-----------------------------------------------------------------------------------------------|-----------|--------------|---------------------|---------------|-----|-----|-----|
|                | 8                                                                                             | 12        | 20           | 32                  | 50            | 80  | 150 | 200 |
| 200            | 200                                                                                           | 200       | -            | -                   | -             | -   | -   |     |
| 250            | 280                                                                                           | 260       | 250          | 250                 | 250           | 240 | 230 | 220 |
| 300            | 320                                                                                           | 310       | 300          | 280                 | 280           | 270 | 260 | 250 |
| 350            | 360                                                                                           | 360       | 350          | 340                 | 340           | 340 | 330 | 320 |
| 400            | 400                                                                                           | 400       | 380          | 360                 | 360           | 360 | -   | -   |
| 450            | 450                                                                                           | 450       | 450          | 420                 | 400           | -   | -   | -   |
| CA220          | 210                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA260          | 250                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA350          | 350                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA500          | 500                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| PT430          | 30                                                                                            | 00*       | 280          | 280                 | 280*          | 270 | 250 | -   |
| PT460          | 30                                                                                            | )5*       | 295          | 295                 | 295*          | 275 | 265 | -   |
| PT490          | 360*                                                                                          |           | 340          | 340                 | 340*          | 330 | 320 | -   |
| PT540          | 45                                                                                            | 50*       | 420          | 420                 | 420*          |     | -   | -   |
| Grade          |                                                                                               |           | thickness (n | for<br>nm) less tha | n or equal to | )   |     |     |
|                | 8                                                                                             | 12        | 20           | 32                  | 50            | 80  | 150 | 200 |
| 200            |                                                                                               |           |              | 300                 |               |     |     | 290 |
| 250            |                                                                                               |           |              | 410                 |               |     |     | 400 |
| 300            |                                                                                               |           |              | 430                 |               |     |     | 420 |
| 350            |                                                                                               |           |              | 4.                  | 50            |     |     | _   |
| 400            |                                                                                               |           | 4            | 80                  |               |     | -   | -   |
| 450            |                                                                                               | 520       |              | 5                   | 00            | -   | -   | -   |
| CA220          | 340                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA260          | 350                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA350          | 430                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| CA500          | 510                                                                                           | -         | -            | -                   | -             | -   | -   | -   |
| PT430          |                                                                                               |           |              | 430 ~ 550           |               |     |     | -   |
|                | 460 ~ 580                                                                                     |           |              |                     |               |     |     | -   |
| PT460          |                                                                                               | 490 ~ 610 |              |                     |               |     |     |     |
| PT460<br>PT490 |                                                                                               |           |              | 490 ~ 610           |               |     |     | -   |

For Fine grained, weldable steel plates, the thickness limits are 16 mm and 40 mm instead of 12 mm and 50 mm separately.

Table 4.2e Design parameters of Class E1 Structural steels to Chinese (GB) specifications

| Grade | Minimum yield strength R <sub>eH</sub> (N/mm²)<br>for<br>thickness (mm) less than or equal to |       |           |                                                     |           |     |
|-------|-----------------------------------------------------------------------------------------------|-------|-----------|-----------------------------------------------------|-----------|-----|
|       | 16                                                                                            | 35    | 50        | 100                                                 | 150       | 200 |
| Q235  | 235                                                                                           | 225   | 215       | 215                                                 | 195       | 185 |
| Q275  | 275                                                                                           | 265   | 255       | 245                                                 | 225       | 215 |
| Q295  | 295                                                                                           | 285   | 275       | 255                                                 | -         | -   |
| Q345  | 345                                                                                           | 345   | 345       | 335                                                 | 325       | 305 |
| Q355  | 355                                                                                           | 345   | 335       | 315                                                 | 295       | 285 |
| Q390  | 390                                                                                           | 380   | 360       | 340                                                 | 320       | 310 |
| Q420  | 420                                                                                           | 400   | 390       | 360                                                 | 340       | 330 |
| Q460  | 460                                                                                           | 440   | 430       | 400                                                 | 380       | 370 |
| Q500  | 500                                                                                           | 490   | 480       | 450                                                 | 440       | -   |
| Q550  | 550                                                                                           | 540   | 530       | 500                                                 | 490       | -   |
| Q620  | 620                                                                                           | 610   | 590       | 580                                                 | 560       | -   |
| Q690  | 690                                                                                           | 680   | 670       | 650                                                 | 630       | -   |
| Grade |                                                                                               | tl    | _         | th R <sub>m</sub> (N/mm²)<br>or<br>ss than or equal | to        |     |
|       | 16                                                                                            | 35    | 50        | 100                                                 | 150       | 200 |
| Q235  |                                                                                               | •     | 370 ~ 500 | •                                                   | •         | -   |
| Q275  |                                                                                               |       | 410 ~ 540 |                                                     |           | -   |
| Q295  |                                                                                               | 430   | ~ 560     |                                                     | -         | -   |
| Q345  |                                                                                               | 490   | ~ 610     |                                                     | 470 ^     | 610 |
| Q355  | 470                                                                                           | ~ 630 | 450 ~ 610 | 440 ~ 600                                           | 450 ^     | 600 |
| Q390  | 490                                                                                           | ~ 650 | 480 ~ 640 | 480 ~ 640                                           | 470 ^     | 620 |
| Q420  | 520                                                                                           | ~ 680 | 500 ~ 660 | 470 ~ 630                                           | 500 ^     | 650 |
| Q460  | 540                                                                                           | ~ 720 | 530 ~ 710 | 500 ~ 680                                           | 530 ^     | 710 |
| Q500  | 610                                                                                           | ~ 770 | 600 ~ 760 | 540 ~ 730                                           | 540 ~ 720 | -   |
| Q550  | 670                                                                                           | ~ 830 | 620 ~ 810 | 590 ~ 780                                           | 590 ~ 770 | -   |
| Q620  | 710                                                                                           | ~ 880 | 690 ~ 880 | 670 ~ 860                                           | 650 ~ 830 | -   |
| Q690  | 770                                                                                           | ~ 940 | 750 ~ 920 | 730 ~ 900                                           | 710 ~ 900 | -   |

Table 4.2f Design parameters of Class E1 Structural steels to Russian(GOST) specifications

| Grade           | Minimum yield strength Reн (N/mm²)<br>for<br>thickness (mm) less than or equal to |         |         |                                                  |     |     |  |  |
|-----------------|-----------------------------------------------------------------------------------|---------|---------|--------------------------------------------------|-----|-----|--|--|
|                 | 16                                                                                | 40      | 60      | 80                                               | 100 | 160 |  |  |
| С245 (Ст3Ххх**) | 235                                                                               | 225     | 215     | 215                                              | 215 | 195 |  |  |
| С255 (Ст4кп)    | 245                                                                               | 235     | 235     | 235                                              | 235 | -   |  |  |
| C345            | 325                                                                               | 305     | 285     | 275                                              | 265 | 265 |  |  |
| C355            | 355                                                                               | 345     | 335     | 325                                              | 315 | 295 |  |  |
| C390            | 390                                                                               | 380     | 380*    | -                                                | -   | -   |  |  |
| C440            | 440                                                                               | 440     | 440*    | -                                                | -   | -   |  |  |
| C550            | 540                                                                               | 540     | 540*    | -                                                | -   | -   |  |  |
| C590            | 590                                                                               | 590     | 590*    | -                                                | -   | -   |  |  |
| 265 (Ст4хх**)   | 265                                                                               | 255     | 245     | 245                                              | 245 | 235 |  |  |
| 295 (Ст5xx**)   | 285                                                                               | 275     | 265     | 265                                              | 265 | 255 |  |  |
| 315             | 315                                                                               | 315     | 315     | -                                                | -   | -   |  |  |
| 325             | 325                                                                               | 325     | 325     | -                                                | -   | -   |  |  |
| 345             | 345                                                                               | 345     | 345     | -                                                | -   | -   |  |  |
| 355             | 355                                                                               | 355     | 355     | -                                                | -   | -   |  |  |
| 375             | 375                                                                               | 375     | 375     | -                                                | -   | -   |  |  |
| 390             | 390                                                                               | 390     | 390     | -                                                | -   | -   |  |  |
| 440             | 440                                                                               | 440     | 440     | -                                                | -   | -   |  |  |
| 460             | 460                                                                               | 460     | 460     | -                                                | -   | -   |  |  |
| Grade           |                                                                                   |         | f       | th R <sub>m</sub> (N/mm²<br>or<br>ss than or equ | -   | Γ   |  |  |
|                 | 16                                                                                | 40      | 60      | 80                                               | 100 | 160 |  |  |
| C245 (CT3Xxx**) |                                                                                   |         | 360 ·   | ~ 460                                            |     |     |  |  |
| С255 (Ст4кп)    | 37                                                                                | 70      |         | 400 ~ 510                                        |     | -   |  |  |
| C345            | 470                                                                               | 460     | 450     | 440                                              | 430 | 430 |  |  |
| C355            | 470                                                                               | 470     | 470     | 460                                              | 460 | 460 |  |  |
| C390            | 520                                                                               | 520     | 520*    | -                                                | -   | -   |  |  |
| C440            | 540                                                                               | 540     | 540*    | -                                                | -   | -   |  |  |
| C550            | 640                                                                               | 640     | 640*    | -                                                | -   | -   |  |  |
| C590            | 685                                                                               | 685     | 685*    | -                                                | -   | -   |  |  |
| 265 (Ст4xx**)   |                                                                                   |         | 410     | ~530                                             |     |     |  |  |
| 295 (Ст5хх**)   |                                                                                   |         | 450     | ~590                                             |     |     |  |  |
| 315             | 450                                                                               | 450     | 450     | -                                                | -   | -   |  |  |
| 325             | 450                                                                               | 450     | 450     | -                                                | -   | -   |  |  |
| 345             | 490                                                                               | 490     | 490     | -                                                | -   | -   |  |  |
| 355             | 490                                                                               | 490     | 490     | -                                                | -   | -   |  |  |
| 375             | 510                                                                               | 510     | 510     | -                                                | -   | -   |  |  |
| 390             | 510                                                                               | 510     | 510     | -                                                | -   | -   |  |  |
| 440             | 590                                                                               | 590     | 590     | -                                                | -   | -   |  |  |
| 460             | 540~720                                                                           | 540~720 | 540~720 | -                                                | -   | -   |  |  |

<sup>\*</sup> Thickness is no more than 50mm.

<sup>\*\*.</sup> Steel grades are Ст3кп, Ст3пс, Ст3Сп, Ст3Гпс, Ст3Гсп, Ст4пс, Ст4сп, Ст5Гпс.

# 4.2.2 Class E1 Thin gauge strips

The design parameters of Class E1 Thin gauge strips (hot rolled strips) for cold formed profiled sheetings corresponding to different steel grades of various national steel materials specifications are given in Table 4.3.

Table 4.3a Design parameters of Thin gauge strips to European (EN) specifications

| Grade  | Minimum yield strength  R <sub>e</sub> (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|--------|------------------------------------------------|------------------------------------------|
| S220GD | 220                                            | 300                                      |
| S250GD | 250                                            | 330                                      |
| S280GD | 280                                            | 360                                      |
| S320GD | 320                                            | 390                                      |
| S350GD | 350                                            | 420                                      |
| S550GD | 550                                            | 560                                      |

Table 4.3b Design parameters of Class E1 Thin gauge strips to American (ASTM) specifications

| Grade | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|-------------------------------------------|------------------------------------------|
| 230   | 230                                       | 310                                      |
| 255   | 255                                       | 360                                      |
| 275   | 275                                       | 360                                      |
| 340   | 340                                       | 410                                      |
| 380   | 380                                       | 480                                      |
| 410   | 410                                       | 480                                      |
| 480   | 480                                       | 550                                      |
| 550   | 550                                       | 570                                      |

Table 4.3c Design parameters of Class E1 Thin gauge strips to Japanese (JIS) specifications

| Grade | Minimum yield strength  Re (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|------------------------------------|------------------------------------------|
| 340   | 245                                | 340                                      |
| 400   | 295                                | 400                                      |
| 440   | 335                                | 440                                      |
| 490   | 365                                | 490                                      |
| 540   | 400                                | 540                                      |

Table 4.3d Design strengths of Class E1 Thin gauge strips to Australian/New Zealand (AS/NZS) specifications

| Grade | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|-------------------------------------------|------------------------------------------|
| 250   | 250                                       | 320                                      |
| 300   | 300                                       | 340                                      |
| 350   | 350                                       | 420                                      |
| 450   | 450                                       | 480                                      |
| 500   | 500                                       | 520                                      |
| 550   | 550                                       | 550                                      |

Table 4.3e Design parameters of Class E1 Thin gauge strips to Chinese (GB) specifications

| Grade | Minimum yield strength  R <sub>e</sub> (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|------------------------------------------------|------------------------------------------|
| 220   | 220                                            | 300                                      |
| 250   | 250                                            | 330                                      |
| 280   | 280                                            | 360                                      |
| 300   | 300                                            | 370                                      |
| 320   | 320                                            | 390                                      |
| 350   | 350                                            | 420                                      |
| 420   | 420                                            | 480                                      |
| 450   | 450                                            | 510                                      |
| 550   | 550                                            | 560                                      |

Table 4.3f Design parameters of Class E1 Thin gauge strips to Russian(GOST) specifications

| Grade | Minimum yield strength  Re (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|------------------------------------|------------------------------------------|
| 02    | ۸                                  | 270 - 500                                |
| 03    | ۸                                  | 270 - 420                                |
| 04    | 260                                | 270 - 380                                |
| 05    | 220                                | 270 - 350                                |
| 220   | 220                                | 300                                      |
| 250   | 250                                | 330                                      |
| 280   | 280                                | 360                                      |
| 320   | 320                                | 390                                      |
| 350   | 350                                | 420                                      |
| 295   | 295                                | 410                                      |
| 315   | 315                                | 430                                      |
| 345   | 345                                | 460                                      |
| 355   | 355                                | 480                                      |
| 390   | 390                                | 500                                      |

#### 4.2.3 Class E1 Connection materials

This section covers the design parameters of Class E1 Connection materials including

- i) Stud connectors
- ii) Non-preloaded bolted assemblies
- iii) Preloaded bolted assemblies
- iv) Welding consumables.

#### 4.2.3.1 Class E1 Stud connectors

The design parameters for Class E1 Stud connectors corresponding to various national steel materials specifications are given in Table 4.4.

Table 4.4 Design parameters of Class E1 Stud connectors to European (EN), American (AWS), Japanese (JIS), Australian/New Zealand (AS/NZS), Chinese (GB) and Russian (GOST) specifications

| Material specifications | Ultimate tensile strength,<br>R <sub>m</sub> (N/mm²) |
|-------------------------|------------------------------------------------------|
| BS EN ISO 13918         | 400 ~ 780                                            |
| AWS D1.1 (Type B)       | 450                                                  |
| JIS B 1198              | 400 ~ 550                                            |
| AS/NZS 1554.2           | 410                                                  |
| GB/T 10433              | 400                                                  |
| GOST R ISO 898-1        | 400~1200                                             |

# 4.2.3.2 Class E1 Non-preloaded bolted assemblies

This section covers the design parameters for Class E1 Non-preloaded bolts and the recommended combinations of matching components in non-preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for non-preloaded (or bearing) bolted connections with bolts, plain washers with or without chamfers.

The design parameters for Class E1 Non-preloaded bolts corresponding to different bolt grades of various national steel materials specifications are given in Table 4.5.

Table 4.5a Design parameters of non-preloaded bolts to European (EN) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|--------------------------------------|------------------------------------------|
| 4.6                     | 240                                  | 400                                      |
| 8.8                     | 640                                  | 800                                      |
| 10.9                    | 900                                  | 1000                                     |
| 12.9                    | 1080                                 | 1200                                     |

Table 4.5b Design parameters of Class E1 non-preloaded bolts to American (ASTM) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| A307 - Grade B          | -                                         | 414                                      |
| A325                    | 660                                       | 830                                      |
| A449 – Type 1           | 635                                       | 830                                      |
| A490                    | 940                                       | 1040                                     |

Table 4.5c Design parameters of Class E1 non-preloaded bolts to Japanese (JIS) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 4.8                     | -                                         | 420                                      |
| 8.8                     | -                                         | 800                                      |
| 10.9                    | -                                         | 1040                                     |
| 12.9                    | 1080                                      | 1200                                     |

Table 4.5d Design parameters of Class E1 non-preloaded bolts to Australian/New Zealand (AS/NZ) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 4.6                     | 240                                       | 400                                      |
| 8.8                     | 640                                       | 800                                      |
| 10.9                    | 900                                       | 1000                                     |
| 12.9                    | 1080                                      | 1200                                     |

Table 4.5e Design parameters of Class E1 non-preloaded bolts to Chinese (GB) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 4.6                     | 240                                       | 400                                      |
| 8.8                     | 640                                       | 800                                      |
| 10.9                    | 940                                       | 1040                                     |
| 12.9                    | 1100                                      | 1220                                     |

Table 4.5f Design parameters of Class E1 non-preloaded bolts to Russian (GOST) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|---------------------------------------------------|------------------------------------------|
| 5.6                     | 300                                               | 500                                      |
| 5.8                     | 400                                               | 500                                      |
| 8.8                     | 640                                               | 800                                      |
| 10.9                    | 900                                               | 1000                                     |
| 12.9                    | 1080                                              | 1200                                     |

#### 4.2.3.3 Class E1 Preloaded bolted assemblies

This section covers the design parameters for Class E1 Preloaded bolts and the recommended combinations of matching components in non-preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for preloaded bolted connections with bolts, plain washers with or without chamfers.

The design parameters of Class E1 Preloaded bolts corresponding to different bolt grades of various national steel materials specifications are given in Table 4.6.

Table 4.6a Design parameters of preloaded bolts to European (EN) specifications

| Grade<br>(Bolt marking) | Minimum yield strength  R <sub>e</sub> (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|------------------------------------------------|------------------------------------------|
| 8.8                     | 640                                            | 800                                      |
| 10.9                    | 900                                            | 1000                                     |
| 12.9                    | 1080                                           | 1200                                     |

Table 4.6b Design parameters of Class E1 Preloaded bolts to American (ASTM) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| A325                    | 660                                       | 830                                      |
| A354 - Grade BC         | 685                                       | 795                                      |
| A354 - Grade BD         | 900                                       | 1035                                     |
| A490                    | 940                                       | 1040                                     |

Table 4.6c Design parameters of Class E1 Preloaded bolts to Japanese (JIS) specifications

| Grade<br>(Bolt marking) | Minimum yield strength  Re (N/mm²) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|------------------------------------|------------------------------------------|
| F8T                     | 640                                | 800                                      |
| F10T                    | 900                                | 1000                                     |

Table 4.6d Design parameters of Class E1 Preloaded bolts to Australian/New Zealand (AS/NZS) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 8.8                     | 640                                       | 800                                      |
| 10.9                    | 900                                       | 1000                                     |
| 12.9                    | 1080                                      | 1200                                     |

Table 4.6e Design parameters of Class E1 Preloaded bolts to Chinese (GB) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 8.8                     | 640                                       | 800                                      |
| 10.9                    | 940                                       | 1040                                     |
| 12.9                    | 1100                                      | 1220                                     |

Table 4.6f Design parameters of Class E1 Preloaded bolts to Russian (GOST) specifications

| Grade<br>(Bolt marking) | Minimum yield strength $R_e$ (N/mm $^2$ ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------------------------|-------------------------------------------|------------------------------------------|
| 10.9                    | 900                                       | 1000                                     |
| 12.9                    | 1080                                      | 1200                                     |

# 4.2.3.4 Class E1 Welding consumables

For design to EN 1993, the specified strengths, ductility and impact toughness of welding consumables should be at least equivalent to those specified for the parent metal. The design parameters corresponding to different weld grades of various national materials specifications are given in Table 4.7.

Table 4.7a Design parameters of welds made of European (EN) welding consumables

| Grade | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength R <sub>m</sub> (N/mm²) |
|-------|---------------------------------------------------|-----------------------------------------|
| 35    | 355                                               | 440                                     |
| 38    | 380                                               | 470                                     |
| 42    | 420                                               | 500                                     |
| 46    | 460                                               | 530                                     |
| 50    | 500                                               | 560                                     |

Table 4.7b Design parameters of Class E1 Welds made of American (AWS) welding consumables

| Grade | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength $R_m$ (N/mm <sup>2</sup> ) |
|-------|---------------------------------------------------|---------------------------------------------|
| E43xx | 330                                               | 430                                         |
| E49xx | 400                                               | 490                                         |

Table 4.7c Design parameters of Class E1 Welds made of Japanese (JIS) welding consumables

| Grade | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength  R <sub>m</sub> (N/mm²) |
|-------|---------------------------------------------------|------------------------------------------|
| E43xx | 330                                               | 430                                      |
| E49xx | 390                                               | 480                                      |
| E55xx | 460                                               | 550                                      |
| E57xx | 490                                               | 570                                      |

Table 4.7d Design parameters of Class E1 Welds made of Australian/New Zealand (AS/NZ) welding consumables

| Grade | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength $R_m$ (N/mm <sup>2</sup> ) |
|-------|---------------------------------------------------|---------------------------------------------|
| E43xx | 330                                               | 430                                         |
| E49xx | 390                                               | 480                                         |
| E55xx | 460                                               | 550                                         |
| E57xx | 490                                               | 570                                         |

Table 4.7e Design parameters of Class E1 Welds made of Chinese (GB) welding consumables

| Grade | Minimum yield strength $R_e$ (N/mm <sup>2</sup> ) | Tensile strength $R_m$ (N/mm <sup>2</sup> ) |
|-------|---------------------------------------------------|---------------------------------------------|
| E43xx | 330                                               | 430                                         |
| E50xx | 400                                               | 490                                         |
| E55xx | 460                                               | 550                                         |
| E57xx | 490                                               | 570                                         |

Table 4.7f Design parameters of Class E1 Welds made of Russian (GOST) welding consumables

| Grade     | Minimum yield strength  Re (N/mm²) | Tensile strength $R_m$ (N/mm <sup>2</sup> ) |
|-----------|------------------------------------|---------------------------------------------|
| Э42, Э42A | -                                  | 412                                         |
| 946, 946A | -                                  | 451                                         |
| 950, 950A | -                                  | 490                                         |
| Э60       | -                                  | 588                                         |
| Э70       | -                                  | 686                                         |

# 4.3 Design Parameters for Class E2 Steel Materials

This section presents the design guidance on Class E2 Steel materials which are manufactured in accordance with all the material requirements given in one of the Acceptable Materials Specifications, but without a certified Factory Production Control System according to European steel materials specifications. The corresponding material class factor  $\gamma_{MC}$  should be taken as 1.1.

#### 4.3.1 Class E2 Structural steels

This section covers the design parameters for Class E2 Structural steels including

- i) hot rolled plates, sections, hollow sections, sheet piles, solid bars,
- ii) hot rolled strips for cold formed sections.

The design parameters for a proposed Class E2 Structural steel corresponding to different steel thicknesses given in a product standard are given in Table 4.8. It should be noted that  $R_{\text{eHo}}$  is the minimum yield strength according to the relevant product standard.

Table 4.8 Design parameters of Class E2 Structural steels

|                                                                                                   | For thickness (mm) less than or equal to |                       |                       |                       |                       |                       |
|---------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                                                                                   | 16                                       | 40                    | 63                    | 80                    | 100                   | 150                   |
| Minimum<br>yield<br>strength R <sub>eH</sub><br>(N/mm²)                                           | R <sub>eHo</sub>                         | 0.95 R <sub>eHo</sub> | 0.92 R <sub>eHo</sub> | 0.90 R <sub>eHo</sub> | 0.85 R <sub>eHo</sub> | 0.80 R <sub>eHo</sub> |
| Tensile<br>strength R <sub>m</sub><br>(N/mm²)                                                     | R <sub>mo</sub>                          | 0.95 R <sub>mo</sub>  | 0.92 R <sub>mo</sub>  | 0.90 R <sub>mo</sub>  | 0.86 R <sub>mo</sub>  | 0.80 R <sub>mo</sub>  |
| * For rolled sections, used the specified thickness of the thickest element of the cross-section. |                                          |                       |                       |                       |                       |                       |

Notes:

 $R_{\text{eHo}}$  is the minimum yield strength according to the product standard, and  $R_{\text{mo}}$  is the ultimate tensile strength according to the product standard.

#### 4.3.2 Class E2 Thin gauge strips

The design parameters for Class E2 Thin gauge strips (hot rolled strips) for cold formed profiled sheeting given in a product standard (which is a national steel materials specification) should be computed using the following equations.

Minimum yield strength

 $R_e = R_{eHo} \leq 550 \text{ N/mm}^2$ 

• Tensile strength

 $R_m = R_{mo} \leq 600 \text{ N/mm}^2$ 

where  $R_{\text{eHo}}$  is the minimum yield strength according to the product standard, and  $R_{\text{mo}}$  is the ultimate tensile strength according to the product standard.

#### 4.3.3 Class E2 Connection materials

This section covers the design parameters for Class E2 Connection materials including

- i) Stud connectors
- ii) Non-preloaded bolted assemblies
- i) Preloaded bolted assemblies
- ii) Welding consumables.

#### 4.3.3.1 Class E2 Stud connectors

The design parameters for a proposed Class E2 Stud connector should be computed using the following equations.

• Minimum yield strength

$$R_e = R_{eo} \leq 275 \text{ N/mm}^2$$

Tensile strength

$$R_m = R_{mo} \leq 450 \text{ N/mm}^2$$

where R<sub>eo</sub> is the minimum yield strength according to the relevant product standard, and

 $R_{\text{mo}}$  is the ultimate tensile strength according to the relevant product standard.

# 4.3.3.2 Class E2 Non-preloaded bolted assemblies

This section covers the design parameters for Class E2 Non-preloaded bolts and the recommended combinations of matching components in non-preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for non-preloaded (or bearing) bolted connections with bolts, plain washers with or without chamfers.

The design parameters for a proposed Class E2 Non-preloaded bolt should be computed using the following equations:

• Minimum yield strength

$$R_e = 0.77 R_{eo}$$

Tensile strength

$$R_m = 0.77 R_{mo}$$

where R<sub>eo</sub> is the minimum yield strength according to the relevant product standard, and

 $R_{\text{mo}}$  is the ultimate tensile strength according to the relevant product standard.

#### 4.3.3.3 Class E2 Preloaded bolted assemblies

This section covers the design parameters for Class E2 Preloaded bolts and the recommended combinations of matching components in preloaded bolted assemblies. It covers ISO metric hexagon bolts, nuts and washers for preloaded bolted connections with bolts, plain washers with or without chamfers.

The design parameters for a proposed Class E2 Preloaded bolt should be computed using the following equations:

• Minimum yield strength

$$R_e = 0.77 R_{eo}$$

• Tensile strength

$$R_m = 0.77 R_{mo}$$

where

R<sub>eo</sub> is the minimum yield strength according to the product standard of the proposed bolt, and

 $R_{\text{mo}}$  is the tensile strength according to the product standard of the proposed bolt.

#### 4.3.3.4 Class E2 Welding consumables

The design parameters for a proposed Class E2 Welding consumable should be computed as follows:

Minimum yield strength

$$R_e = 0.80 R_{eo}$$

• Tensile strength

$$R_m = 0.80 R_{mo}$$

where

R<sub>eo</sub> is the minimum yield strength according to the product standard of the proposed weld consumable, and

R<sub>mo</sub> is the tensile strength according to the product standard of the proposed weld consumable.

Moreover, it should be noted that

- i) the specified strengths of the welding consumables should be at least equal to 1.2 times of that specified for the parent metal, and
- ii) the specified ductility and impact toughness of the welding consumables shall be at least equal to that specified for the parent metal.

#### 4.4 Design Parameters for Class E3 Steel Materials

This section covers the use of Class E3 steel materials which are not in compliance with the requirements on neither material performance nor quality assurance. Hence, any steel material which cannot be demonstrated to be either Class E1 Steel Material or Class E2 Steel Material will be classified as Class E3 Steel Material; no additional material test is needed in general.

It should be noted that there are no Class 3 steel materials for thin gauge strips nor for connection materials.

#### 4.4.1 Class E3 Structural steels

This section covers the design strengths of Class E3 Structural steels including

- i) hot rolled plates, sections, hollow sections, sheet piles, solid bars, and
- ii) hot rolled strips for cold formed sections.

Instead of giving the minimum yield strengths and tensile strengths of Class 3 Structural steels, the nominal values of yield strengths and of ultimate tensile strengths are given in Table 4.9.

Table 4.9 Design parameters of Class E3 Structural steels

|     | Nominal value of yield strength, $f_y$ (N/mm <sup>2</sup> ) for                                    |     |     |     |     |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|--|
|     | thickness <sup>a</sup> (mm) less than or equal to                                                  |     |     |     |     |  |  |  |  |  |  |
| 16  | 16 40 63 80 100 150                                                                                |     |     |     |     |  |  |  |  |  |  |
| 170 | 160                                                                                                | 155 | 150 | 145 | 135 |  |  |  |  |  |  |
| 1 ' | a) For rolled sections, use the specified thickness of the thickest element of the cross-sections. |     |     |     |     |  |  |  |  |  |  |

It should be noted that the nominal values of ultimate tensile strength  $f_u$  should be computed using the following equation:

$$f_u = 1.1 f_v$$

where

 $f_{\nu}$  is the nominal value of yield strength given in Table 4.9.

#### References

BS EN 1993-1-1, Eurocode 3: Design of steel structures. General rules and rules for buildings. British Standards Institution, 2005.

BS EN 1994-1-1, Eurocode 4: Design of composite steel and concrete structures. General rules and rules for buildings. British Standards Institution, 2005.

Chabrolin, B. Partial safety factors for resistances of steel elements to EC3 and EC4 - Calibration for various steel products and failure criteria, Luxembourg Office for Official Publication of the European Communities 2002, ISBN: 92-894-3696-4.

Constructional Steel Design: World Developments. Dowling, P.J., Harding J.E., Bjorhovde R. and F. Martinez-Romero. Elsevier Science Publishers Ltd., 1992.

Chung, K.F., Harmonized member buckling design in Structural Eurocodes. Innovation in Construction, Research Journal 2014, Construction Industry Council, Hong Kong, 2014.

Code of Practice for Structural Use of Steel, Buildings Department, Government of Hong Kong SAR, Hong Kong, 2011 (2021 Edition).

Design Guide on Use of Alternative Steel Materials to BS 5950 (BC1: 2008). Building and Construction Authority, Singapore, 2008.

Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3 (BC1: 2012). Building and Construction Authority, Singapore, 2012.

Steel Designers' Manual. 7<sup>th</sup> Edition. Buick Davidson & Graham W. Owens. Steel Construction Institute, Wiley-Blackwell, 2012.

Structural Steel Selection Considerations: A Guide for Students, Educators, Designers, and Builders. American Society of Civil Engineers, 2000.

Willms R. High strength steels in steel construction: Application and processing. Proceedings of the 5th European Conference on Steel and Composite Structures, EUROSTEEL 2008, Graz, Page 1083-1088.

Ginzburg, Vladimir B. Metallurgical design of flat rolled steels. NY: Marcel Dekker, 2005.

William D. Callister, Jr., David G. Rethwisch. Materials science and engineering, 9th edition. NJ: Wiley, 2015.

Mandal, S. K. Steel metallurgy: properties, specifications and applications. NY: McGraw-Hill Education LLC., 2015.

Brandt, Daniel A., Warner, J.C. Metallurgy fundamentals. Ill.: Goodheart-Willcox, 2005.

Günther, Hans-Peter. Use and application of high-performance steels for steel structures. IABSE, 2005.

## Appendices

| Α | List o | f acceptable steel materials                           | A1  |
|---|--------|--------------------------------------------------------|-----|
|   | A.1    | Acceptable British/European steel materials            | A3  |
|   | A.2    | Acceptable American steel materials                    | A27 |
|   | A.3    | Acceptable Japanese steel materials                    | A49 |
|   | A.4    | Acceptable Australian/New Zealand steel materials      | A65 |
|   | A.5    | Acceptable Chinese steel materials                     | A70 |
|   | A.6    | Acceptable Russian steel materials                     | A89 |
| В | List o | f reference standards                                  | B1  |
|   | B.1    | British/European standards                             | B2  |
|   | B.2    | American standards                                     | В8  |
|   | B.3    | Japanese standards                                     | B12 |
|   | B.4    | Australian/New Zealand standards                       | B15 |
|   | B.5    | Chinese standards                                      | B17 |
|   | B.6    | Russian specifications                                 | B20 |
| С | Quali  | ty control practices adopted by regulatory authorities | C1  |
|   | C.1    | Quality control practice in Australia and New Zealand  | C3  |
|   | C.2    | Quality control practice in Hong Kong                  | C5  |
|   | C.3    | Quality control practice in Macau                      | C7  |
|   | C.4    | Quality control practice in Malaysia                   | C8  |
|   | C.5    | Quality control practice in Singapore                  | С9  |
| D | Work   | ed Examples                                            | D1  |
|   | D.1    | Acceptance of British/European steel materials         | D2  |
|   | D.2    | Acceptance of American steel materials                 | D4  |
|   | D.3    | Acceptance of Japanese steel materials                 | D7  |
|   | D.4    | Acceptance of Australian/New Zealand steel materials   | D10 |
|   | D.5    | Acceptance of Chinese steel materials                  | D13 |
|   | D.6    | Acceptance of Russian steel materials                  | D17 |
|   | D.7    | Acceptance of Class E3 steel materials                 | D20 |

## Appendix A Lists of acceptable steel materials

- A.1 Acceptable British/European steel materials
- A.2 Acceptable American steel materials
- A.3 Acceptable Japanese steel materials
- A.4 Acceptable Australian/New Zealand steel materials
- A.5 Acceptable Chinese steel materials
- A.6 Acceptable Russian steel materials

## Appendix A Lists of Acceptable steel materials

This Appendix only covers acceptable steel materials manufactured to selected material standards as follows:

- British/European standards (BS EN),
- American standards (API, ASTM and AWS),
- Japanese standards (JIS),
- Australian/New Zealand standards (AS/NZS and AS),
- · Chinese standards (GB), and
- Acceptable Russian steel materials (GOST).

It should be noted that reference should be made to the last version of the material standards.

NOTE Depending on the quality assurance provided by the manufacturer, materials in this appendix can be either Class 1 or Class 3.

## A.1 Acceptable British/European steel materials

## A.1.1 Acceptable British/European structural steel: plates

BS EN 10025-2: 2019 – Non-alloy Structural Steel

| Cuada    | Thickness     | Chemic               | cal compos              | ition (%) | Max.       | Ys                   | Us        | ε <sub>L</sub> a | Impact                        |
|----------|---------------|----------------------|-------------------------|-----------|------------|----------------------|-----------|------------------|-------------------------------|
| Grade    | (mm)          | С                    | Р                       | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)              | toughness <sup>b</sup><br>(J) |
|          | 3 ≤ t ≤ 16    | 0.17                 |                         |           | 0.35       | 235                  |           | 26               |                               |
|          | 16 < t ≤ 40   | 0.17                 |                         |           | 0.55       | 225                  |           | 20               | ≥ 27J @ 20°C                  |
| COOLID   | 40 < t ≤ 63   |                      | 0.035<br>0.035<br>0.035 | 0.035     |            | 215                  | 360 ~ 510 | 25               |                               |
| S235JR   | 63 < t ≤ 80   | 0.20                 | 0.035                   | 0.035     | 0.20       | 215                  |           | 24               |                               |
|          | 80 < t ≤ 100  | 0.20                 |                         |           | 0.38       | 215                  |           | 24               |                               |
|          | 100 < t ≤ 150 |                      |                         |           |            | 195                  | 350 ~ 500 | 22               |                               |
|          | 3 ≤ t ≤ 16    | 0.17                 |                         |           | 0.35       | 235                  |           | 26               |                               |
|          | 16 < t ≤ 40   | 0.17                 |                         |           | 0.35       | 225                  |           | 20               |                               |
| C22E10   | 40 < t ≤ 63   |                      | 0.030                   | 0.030     |            | 215                  | 360 ~ 510 | 25               | > 271 @ 000                   |
| S235J0   | 63 < t ≤ 80   | 0.17                 | 0.030                   | 0.030     | 0.38       | 215                  |           | 24               | ≥ 27J @ 0°C                   |
|          | 80 < t ≤ 100  | 0.17                 |                         |           | 0.38       | 215                  |           | 24               |                               |
|          | 100 < t ≤ 150 |                      |                         |           |            | 195                  | 350 ~ 500 | 22               |                               |
|          | 3 ≤ t ≤ 16    | 0.17                 |                         |           | 0.35       | 235                  |           | 26               |                               |
|          | 16 < t ≤ 40   | 0.17                 | 0.025                   |           | 0.55       | 225                  |           | 20               |                               |
| S235J2 - | 40 < t ≤ 63   |                      |                         | 0.025     | 0.38       | 215                  | 360 ~ 510 | 25               | ≥ 27J @ -20°C                 |
|          | 63 < t ≤ 80   | 0.17                 |                         |           |            | 215                  |           | 24               | ≥ 27J @ -20°C                 |
|          | 80 < t ≤ 100  | 0.17                 |                         |           | 0.36       | 215                  |           | 24               |                               |
|          | 100 < t ≤ 150 |                      |                         |           |            | 195                  | 350 ~ 500 | 22               |                               |
|          | 3 ≤ t ≤ 16    | 0.21                 |                         |           | 275        |                      | 23        |                  |                               |
|          | 16 < t ≤ 40   | 0.21                 |                         |           | 0.40       | 265                  |           | 23               | · ≥ 27J @ 20°C                |
| C27EID   | 40 < t ≤ 63   |                      | 0.035                   | 0.035     |            | 255                  | 410 ~ 560 | 22               |                               |
| S275JR   | 63 < t ≤ 80   | 0.22                 | 0.035                   | 0.035     | 0.42       | 245                  |           | 21               |                               |
|          | 80 < t ≤ 100  | 0.22                 |                         |           | 0.42       | 235                  |           | 21               |                               |
|          | 100 < t ≤ 150 |                      |                         |           |            | 225                  | 400 ~ 540 | 19               |                               |
|          | 3 ≤ t ≤ 16    | 0.18                 |                         |           | 0.40       | 275                  |           | 23               |                               |
|          | 16 < t ≤ 40   | 0.18                 |                         |           | 0.40       | 265                  |           | 23               |                               |
| S275J0   | 40 < t ≤ 63   |                      | 0.030                   | 0.030     |            | 255                  | 410 ~ 560 | 22               | > 271 @ 000                   |
| 32/310   | 63 < t ≤ 80   | 0.10                 | 0.030                   | 0.030     | 0.42       | 245                  |           | 21               | ≥ 27J @ 0°C                   |
|          | 80 < t ≤ 100  | 0.18<br>30 < t ≤ 100 |                         | 0.42      | 235        |                      | 21        |                  |                               |
|          | 100 < t ≤ 150 |                      |                         |           | 225        | 400 ~ 540            | 19        |                  |                               |
|          | 3 ≤ t ≤ 16    | 0.18                 |                         |           | 0.40       | 275                  |           | 22               |                               |
|          | 16 < t ≤ 40   | 0.18                 |                         |           | 0.40       | 265                  | 23        | 23               | ≥ 27J @ -20°C                 |
| C27E12   | 40 < t ≤ 63   |                      | 0.035                   | 0.035     |            | 255                  | 410 ~ 560 | 22               |                               |
| S275J2 — | 63 < t ≤ 80   | 0.10                 | 0.025                   | 5 0.025   | 0.42       | 245                  | 5 21      | 21               |                               |
|          | 80 < t ≤ 100  | 0.18                 |                         |           |            | 235                  |           | 21               |                               |
|          | 100 < t ≤ 150 |                      |                         |           |            | 225                  | 400 ~ 540 | 19               |                               |

|            | Thickness          | Chemic            | al composi | tion (%)          | Max.              | Ys      | Us             | ε <sub>L</sub> a | Impact                        |
|------------|--------------------|-------------------|------------|-------------------|-------------------|---------|----------------|------------------|-------------------------------|
| Grade      | (mm)               | С                 | Р          | S                 | CEV<br>(%)        | (N/mm²) | (N/mm²)        | (%)              | toughness <sup>b</sup><br>(J) |
|            | 3 ≤ t ≤ 16         | 0.24              |            |                   | 0.45              | 355     |                | 22               |                               |
|            | 16 < t ≤ 40        | 0.24              |            |                   | 0.45 <sup>d</sup> | 345     |                | 22               |                               |
| S355JR     | 40 < t ≤ 63        |                   | 0.035      | 0.005             |                   | 335     | 470 ~ 630      | 21               |                               |
| 22221K     | 63 < t ≤ 80        | 0.24              | 0.035      | 0.035             | 0.47              | 325     |                | 20               | ≥ 27J @ 20°C                  |
|            | 80 < t ≤ 100       | 0.24              |            |                   | 0.47              | 315     |                | 20               |                               |
|            | 100 < t ≤ 150      |                   |            |                   |                   | 295     | 450 ~ 600      | 18               |                               |
|            | 3 ≤ t ≤ 16         | 0.20              |            |                   | 0.45              | 355     |                | 22               |                               |
|            | 16 < t ≤ 40        | 0.20 <sup>d</sup> |            |                   | 0.45 <sup>d</sup> | 345     |                | 22               |                               |
| S355J0     | 40 < t ≤ 63        |                   | 0.030      | 0.020             |                   | 335     | 470 ~ 630      | 21               | > 371 @ 000                   |
| 63 < t ≤ 8 | 63 < t ≤ 80        | 0.22              | 0.030      | 0.030             | 0.47              | 325     |                | 20               | ≥ 27J @ 0°C                   |
|            | 80 < t ≤ 100       | 0.22              |            |                   |                   | 315     |                | 20               |                               |
|            | 100 < t ≤ 150      |                   |            |                   |                   | 295     | 450 ~ 600      | 18               |                               |
|            | 3 ≤ t ≤ 16         | 0.20              |            |                   | 0.45              | 355     | 450 ~ 600   18 | 22               | ,                             |
|            | 16 < t ≤ 40        | 0.20 <sup>d</sup> |            |                   | 0.45 <sup>d</sup> | 345     |                |                  | 22                            |
| S355J2     | 40 < t ≤ 63        |                   | 0.025      | 0.025             |                   | 335     | 470 ~ 630      | 21               | ≥ 27J @ -20°C                 |
| 333312     | 63 < t ≤ 80        | 0.22              | 0.023      | 0.023             | 0.47 *            | 325     |                | 20               | ≥ 273 @ -20°C                 |
|            | 80 < t ≤ 100       | 0.22              |            |                   | 0.47              | 315     |                | 20               |                               |
|            | 100 < t ≤ 150      |                   |            |                   |                   | 295     | 450 ~ 600      | 18               |                               |
|            | 3 ≤ t ≤ 16         | 0.20              |            |                   | 0.45              | 355     |                | 22               |                               |
|            | 16 < t ≤ 40 0.20 d |                   |            | 0.45 <sup>d</sup> | 345               |         | 22             |                  |                               |
| S355K2 -   | 40 < t ≤ 63        |                   | 0.025      | 0.025             |                   | 335     | 470 ~ 630      | 21               | ≥ 40J @ -20°C °               |
|            | 63 < t ≤ 80        | 0.22              | 0.023      | 0.025             | 0.47              | 325     |                | 20               |                               |
|            | 80 < t ≤ 100       | 0.22              |            |                   | 0.47              | 315     |                | 20               |                               |
|            | 100 < t ≤ 150      |                   |            |                   |                   | 295     | 450 ~ 600      | 18               |                               |

Note: a. The direction parallel to the rolling direction applies. Transverse values are 2 % lower for thickness ≤ 100.

### BS EN 10025-3: 2019 - Normalized Rolled Weldable Fine Grain Structural Steels

| Grade   | Thickness     | Chemic | al composi | tion (%) | Max.<br>CEV | Ys                   | Us                   | εL  | Impact<br>toughness b          |
|---------|---------------|--------|------------|----------|-------------|----------------------|----------------------|-----|--------------------------------|
| Grade   | (mm)          | С      | Р          | S        | (%)         | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | (J)                            |
|         | t ≤ 16        |        |            |          |             | 275                  |                      |     |                                |
|         | 16 < t ≤ 40   |        |            |          | 0.40        | 265                  |                      | 24  | ≥ 55J @ 20°C                   |
| S275N   | 40 < t ≤ 63   | 0.18   | 0.030      | 0.025    |             | 255                  | 370 ~ 510            |     | ≥ 47J @ 0°C                    |
| 32/311  | 63 < t ≤ 80   | 0.16   | 0.030      | 0.025    | 0.40        | 245                  |                      |     | ≥ 43J @ -10°C                  |
|         | 80 < t ≤ 100  |        |            |          | 0.40        | 235                  |                      | 23  | ≥ 40J @ -20°C °                |
|         | 100 < t ≤ 150 |        |            |          | 0.42        | 225                  | 350 ~ 480            |     |                                |
|         | t ≤ 16        |        |            |          |             | 275                  |                      |     | ≥ 63J @ 20°C                   |
|         | 16 < t ≤ 40   |        |            |          | 0.40        | 265                  |                      | 24  | ≥ 55J @ 0°C                    |
| S275NL  | 40 < t ≤ 63   | 0.16   | 0.025      | 0.020    |             | 255                  | 370 ~ 510            |     | ≥ 51J @ -10°C                  |
| 32/3INL | 63 < t ≤ 80   | 0.16   | 0.025      | 0.020    | 0.40        | 245                  |                      |     | ≥ 47J @ -20°C<br>≥ 40J @ -30°C |
|         | 80 < t ≤ 100  |        |            | 1        | 0.40        | 235                  | ]                    | 23  | ≥ 31J @ -40°C                  |
|         | 100 < t ≤ 150 |        |            |          | 0.42        | 225                  | 350 ~ 480            |     | ≥ 27J @ -50°C                  |

b. Minimum values of impact energy KV2 on longitudinal test pieces.

c. This value corresponds with 27 J at - 30 °C (see EN 1993-1-10).

d. For nominal thickness > 30 mm: C = 0.22% max, Max. CEV = 0.47%.

| Cuada     | Thickness              | Chemic | al composi                  | ition (%) | Max.       | Y <sub>s</sub>       | Us                             | εL                             | Impact                                                                           |  |
|-----------|------------------------|--------|-----------------------------|-----------|------------|----------------------|--------------------------------|--------------------------------|----------------------------------------------------------------------------------|--|
| Grade     | (mm)                   | С      | Р                           | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> )           | (%)                            | toughness <sup>b</sup><br>(J)                                                    |  |
|           | t ≤ 16                 |        |                             |           |            | 355                  |                                |                                |                                                                                  |  |
|           | 16 < t ≤ 40            |        |                             |           | 0.43       | 345                  |                                | 22                             | ≥ 55J @ 20°C                                                                     |  |
| COLLNI    | 40 < t ≤ 63            | 0.20   | 0.020                       | 0.035     |            | 335                  | 470 ~ 630                      |                                | ≥ 47J @ 0°C                                                                      |  |
| S355N     | 63 < t ≤ 80            | 0.20   | 0.030                       | 0.025     | 0.45       | 325                  |                                |                                | ≥ 43J @ -10°C                                                                    |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.45       | 315                  |                                | 21                             | ≥ 40J @ -20°C °                                                                  |  |
|           | 100 < t ≤ 150          |        |                             |           | 0.45       | 295                  | 450 ~ 600                      |                                |                                                                                  |  |
|           | t ≤ 16                 |        |                             |           |            | 355                  |                                |                                | ≥ 63J @ 20°C                                                                     |  |
|           | 16 < t ≤ 40            |        |                             |           | 0.43       | 345                  |                                | 22                             | ≥ 55J @ 20°C<br>≥ 55J @ 0°C                                                      |  |
| COLLY     | 40 < t ≤ 63            | 0.10   | 0.035                       | 0.020     |            | 335                  | 470 ~ 630                      |                                | ≥ 51J @ -10°C                                                                    |  |
| S355NL    | 63 < t ≤ 80            | 0.18   | 0.18   0.025   0.020   0.45 | 325       |            |                      | ≥ 47J @ -20°C<br>≥ 40J @ -30°C |                                |                                                                                  |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.45       | 315                  |                                | 21                             | ≥ 31J @ -40°C                                                                    |  |
|           | 100 < t ≤ 150          |        |                             |           | 0.45       | 295                  | 450 ~ 600                      |                                | ≥ 27J @ -50°C                                                                    |  |
|           | t ≤ 16                 |        |                             |           |            | 420                  |                                |                                |                                                                                  |  |
|           | 16 < t ≤ 40            |        |                             |           | 0.48       | 400                  |                                | 19                             | > FEL @ 200C                                                                     |  |
| C 42 ON I | 40 < t ≤ 63            | 0.20   |                             | 390       | 520 ~ 680  |                      | ≥ 55J @ 20°C<br>≥ 47J @ 0°C    |                                |                                                                                  |  |
| S420N     | 63 < t ≤ 80            | 0.20   | 0.030                       | 0.025     | 0.50       | 370                  |                                |                                | ≥ 43J @ -10°C<br>≥ 40J @ -20°C °                                                 |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.50       | 360                  |                                | 18                             | ≥ 40J @ -20°C°                                                                   |  |
|           | 100 < t ≤ 150          |        |                             |           | 0.52       | 340                  | 500 ~ 650                      |                                |                                                                                  |  |
|           | t ≤ 16                 |        |                             |           |            | 420                  |                                | 19                             | ≥ 63J @ 20°C<br>≥ 55J @ 0°C<br>≥ 51J @ -10°C<br>• ≥ 47J @ -20°C<br>≥ 40J @ -30°C |  |
|           | 16 < t ≤ 40            |        |                             |           | 0.48       | 400                  |                                |                                |                                                                                  |  |
| 64000     | 40 < t ≤ 63            | 0.00   | 0.005                       |           |            | 390                  | 520 ~ 680                      |                                |                                                                                  |  |
| S420NL    | 63 < t ≤ 80            | 0.20   | 0.025                       | 0.020     | 0.50       | 370                  |                                |                                |                                                                                  |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.50       | 360                  |                                | 18                             | ≥ 31J @ -40°C                                                                    |  |
|           | 100 < t ≤ 150          |        |                             |           | 0.52       | 340                  | 500 ~ 650                      |                                | ≥ 27J @ -50°C                                                                    |  |
|           | t ≤ 16                 |        |                             |           |            | 460                  |                                |                                |                                                                                  |  |
|           | 16 < t ≤ 40            |        |                             |           | 0.53       | 440                  |                                | 17                             | > 551 @ 2000                                                                     |  |
| 545011    | 40 < t ≤ 63            | 0.00   |                             | 0.005     |            | 430                  | 540 ~ 720                      |                                | ≥ 55J @ 20°C<br>≥ 47J @ 0°C                                                      |  |
| S460N     | 63 < t ≤ 80            | 0.20   | 0.030                       | 0.025     | 0.54       | 410                  |                                |                                | ≥ 43J @ -10°C                                                                    |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.54       | 400                  |                                | 17                             | ≥ 40J @ -20°C °                                                                  |  |
|           | 100 < t ≤ 150          | _      |                             | 0.55      | 380        | 530 ~ 710            |                                |                                |                                                                                  |  |
|           | t ≤ 16                 |        |                             |           |            | 460                  |                                |                                | > 621 @ 2006                                                                     |  |
| _         | 16 < t ≤ 40            |        |                             |           | 0.53       | 440                  |                                | 17                             | ≥ 63J @ 20°C<br>≥ 55J @ 0°C                                                      |  |
|           | 40 < t ≤ 63            | 0.55   | 0.55-                       | 0.555     |            | 430                  | 540 ~ 720                      |                                | ≥ 51J @ -10°C                                                                    |  |
| S460NL    | 63 < t ≤ 80 0.20 0.025 | 0.025  | 0.020                       | 0.5:      | 410        |                      |                                | ≥ 47J @ -20°C<br>≥ 40J @ -30°C |                                                                                  |  |
|           | 80 < t ≤ 100           |        |                             |           | 0.54       | 400                  |                                | 17                             | ≥ 31J @ -40°C                                                                    |  |
|           | 100 < t ≤ 150          |        |                             |           | 0.55       | 380                  | 530 ~ 710                      |                                | ≥ 27J @ -50°C                                                                    |  |

Note: b. Minimum values of impact energy KV2 on longitudinal test pieces.

c. This value corresponds with 27 J at - 30  $^{\circ}\text{C}$  (see EN 1993-1-10).

BS EN 10025-4: 2019 - Thermo-mechanical Rolled Weldable Fine Grain Structural Steels

| Cuada    | Thickness     | Chemic | al compos | ition (%) | Max.       | Ys      | Us                     | εL  | Impact                                      |  |
|----------|---------------|--------|-----------|-----------|------------|---------|------------------------|-----|---------------------------------------------|--|
| Grade    | (mm)          | С      | Р         | S         | CEV<br>(%) | (N/mm²) | (N/mm <sup>2</sup> )   | (%) | toughness b<br>(J)                          |  |
|          | t ≤ 16        |        |           |           | 0.34       | 275     |                        |     |                                             |  |
|          | 16 < t ≤ 40   |        |           |           | 0.34       | 265     | 370 ~ 530              |     |                                             |  |
|          | 40 < t ≤ 63   |        |           |           | 0.35       | 255     | 360 ~ 520              |     | ≥ 55J @ 20°C<br>≥ 47J @ 0°C                 |  |
| S275M    | 63 < t ≤ 80   | 0.13   | 0.025     | 0.025     |            | 245     | 350 ~ 510              | 24  | ≥ 43J @ -10°C                               |  |
|          | 80 < t ≤ 100  |        |           |           | 0.38       | 245     | 350 ~ 510              |     | ≥ 40J @ -20°C °                             |  |
|          | 100 < t ≤ 150 |        |           |           |            | 240     | 350 ~ 510              |     |                                             |  |
|          | t ≤ 16        |        |           |           | 0.34       | 275     | 270 520                |     | > 631 @ 3000                                |  |
|          | 16 < t ≤ 40   |        |           |           | 0.34       | 265     | 370 ~ 530              |     | ≥ 63J @ 20°C<br>≥ 55J @ 0°C                 |  |
| 6275141  | 40 < t ≤ 63   | 0.42   | 0.025     | 0.020     | 0.35       | 255     | 360 ~ 520              | 24  | ≥ 51J @ -10°C                               |  |
| S275ML   | 63 < t ≤ 80   | 0.13   | 0.025     | 0.020     |            | 245     | 350 ~ 510              | 24  | ≥ 47J @ -20°C<br>≥ 40J @ -30°C              |  |
|          | 80 < t ≤ 100  |        |           |           | 0.38       | 245     | 350 ~ 510              |     | ≥ 31J @ -40°C                               |  |
|          | 100 < t ≤ 150 |        |           |           |            | 240     | 350 ~ 510              |     | ≥ 27J @ -50°C                               |  |
|          | t ≤ 16        |        |           |           | 0.39       | 355     | 470 ~ 630              |     |                                             |  |
|          | 16 < t ≤ 40   |        |           |           | 0.39       | 345     | 470 630                |     | ≥ 55J @ 20°C                                |  |
| S355M    | 40 < t ≤ 63   | 0.14   | 0.025     | 0.025     | 0.40       | 335     | 450 ~ 610              | 22  | ≥ 47J @ 0°C                                 |  |
| 3555IVI  | 63 < t ≤ 80   | 0.14   | 0.025     | 0.023     |            | 325     | 440 ~ 600              | 22  | ≥ 43J @ -10°C                               |  |
|          | 80 < t ≤ 100  |        |           |           | 0.45       | 325     | 440 ~ 600              |     | ≥ 40J @ -20°C °                             |  |
|          | 100 < t ≤ 150 |        |           |           |            | 320     | 430 ~ 590              |     |                                             |  |
|          | t ≤ 16        |        |           |           | 0.39       | 355     | 470 ~ 630              |     | ≥ 63J @ 20°C<br>≥ 55J @ 0°C<br>> 51J @ 10°C |  |
|          | 16 < t ≤ 40   |        |           |           | 0.39       | 345     | 470 030                |     |                                             |  |
| S355ML   | 40 < t ≤ 63   | 0.14   | 0.025     | 0.020     | 0.40       | 335     | 450 ~ 610<br>440 ~ 600 | 22  | ≥ 51J @ -10°C<br>≥ 47J @ -20°C              |  |
| SSSSIVIE | 63 < t ≤ 80   | 0.14   | 0.023     | 0.020     | 0.45       | 325     |                        | 22  | $\geq$ 40J @ -30°C                          |  |
|          | 80 < t ≤ 100  |        |           |           | 0.45       | 325     | 440 ~ 600              |     | ≥ 31J @ -40°C                               |  |
|          | 100 < t ≤ 150 |        |           |           | 0.45       | 320     | 430 ~ 590              |     | ≥ 27J @ -50°C                               |  |
|          | t ≤ 16        |        |           |           | 0.43       | 420     | 520 ~ 680              |     |                                             |  |
|          | 16 < t ≤ 40   |        |           |           | 0.45       | 400     | 320 000                |     | ≥ 55J @ 20°C                                |  |
| S420M    | 40 < t ≤ 63   | 0.16   | 0.030     | 0.025     | 0.46       | 390     | 500 ~ 660              | 19  | ≥ 47J @ 0°C                                 |  |
| 3420111  | 63 < t ≤ 80   | 0.10   | 0.030     | 0.023     |            | 380     | 480 ~ 640              | 13  | ≥ 43J @ -10°C<br>≥ 40J @ -20°C °            |  |
|          | 80 < t ≤ 100  |        |           |           | 0.47       | 370     | 470 ~ 630              |     | ≥ 401 @ -20 C                               |  |
|          | 100 < t ≤ 150 |        |           |           |            | 365     | 460 ~ 620              |     |                                             |  |
|          | t ≤ 16        |        |           |           | 0.43       | 420     | 520 ~ 680              |     | ≥ 63J @ 20°C                                |  |
|          | 16 < t ≤ 40   |        |           |           | 0.45       | 400     | 320 000                |     | ≥ 55J @ 0°C                                 |  |
| S420ML   | 40 < t ≤ 63   | 0.16   | 0.025     | 0.020     | 0.46       | 390     | 500 ~ 660              | 19  | ≥ 51J @ -10°C<br>≥ 47J @ -20°C              |  |
| 31201112 | 63 < t ≤ 80   | 0.10   | 0.023     | 0.020     |            | 380     | 480 ~ 640              | 13  | ≥ 40J @ -30°C                               |  |
|          | 80 < t ≤ 100  | 1      |           |           | 0.47       | 370     | 470 ~ 630              |     | ≥ 31J @ -40°C<br>≥ 27J @ -50°C              |  |
|          | 100 < t ≤ 150 |        |           |           |            | 365     | 460 ~ 620              |     | ≥ 273 @ -30 C                               |  |
|          | t ≤ 16        |        |           |           | 0.45       | 460     | 540 ~ 720              |     |                                             |  |
|          | 16 < t ≤ 40   |        |           |           | 0.46       | 440     |                        |     | ≥ 55J @ 20°C                                |  |
| S460M    | 40 < t ≤ 63   | 0.16   | 0.030     | 0.025     | 0.47       | 430     | 530 ~ 710              | 17  | 7 ≥ 47J @ 0°C                               |  |
|          | 63 < t ≤ 80   |        |           |           |            | 410     | 510~690                |     | ≥ 43J @ -10°C<br>≥ 40J @ -20°C °            |  |
|          | 80 < t ≤ 100  |        |           |           | 0.48       | 400     |                        |     |                                             |  |
|          | 100 < t ≤ 150 |        |           |           |            | 385     | 480 ~ 640              |     |                                             |  |

| Cuada    | Thickness     | Chemica | al compos | ition (%) | Max.       | Y <sub>s</sub> | Us        | εL  | Impact                         |
|----------|---------------|---------|-----------|-----------|------------|----------------|-----------|-----|--------------------------------|
| Grade    | (mm)          | С       | Р         | S         | CEV<br>(%) | (N/mm²)        | (N/mm²)   | (%) | toughness <sup>b</sup><br>(J)  |
|          | t ≤ 16        |         |           |           | 0.45       | 460            | 540 ~ 720 |     | ≥ 63J @ 20°C                   |
|          | 16 < t ≤ 40   |         |           |           | 0.46       | 440            | 340 720   |     | ≥ 55J @ 0°C                    |
| S460ML   | 40 < t ≤ 63   | 0.16    | 0.025     | 0.020     | 0.47       | 430            | 530 ~ 710 | 17  | ≥ 51J @ -10°C<br>≥ 47J @ -20°C |
| 3400IVIL | 63 < t ≤ 80   | 0.16    | 0.023     | 0.020     |            | 410            | 510 ~ 690 | 17  | ≥ 40J @ -30°C                  |
|          | 80 < t ≤ 100  |         |           |           | 0.48       | 400            | 500 ~ 680 |     | ≥ 31J @ -40°C                  |
|          | 100 < t ≤ 150 |         |           |           |            | 385            | 480 ~ 640 |     | ≥ 27J @ -50°C                  |
|          | t ≤ 16        |         |           |           | 0.47       | 500            |           |     |                                |
|          |               |         |           |           |            |                | 580 ~ 760 |     |                                |
|          | 16 < t ≤ 40   |         |           |           | 0.47       | 480            |           |     | ≥ 55J @ 20°C                   |
| S500M    | 40 < t ≤ 63   | 0.16    | 0.025     | 0.020     | 0.47       | 460            | 580 ~ 760 | 15  | ≥ 47J @ 0°C<br>≥ 43J @ -10°C   |
|          | 63 < t ≤ 80   |         |           |           |            | 450            | 580 ~ 760 |     | ≥ 40J @ -20°C °                |
|          | 80 < t ≤ 100  |         |           |           | 0.48       | 450            | 560 ~ 750 |     |                                |
|          | 100 < t ≤ 150 |         |           |           |            | 450            | 560 ~ 750 |     |                                |
|          | t ≤ 16        |         |           |           | 0.47       | 500            | 580 ~ 760 |     | ≥ 63J @ 20°C                   |
|          | 16 < t ≤ 40   |         |           |           | 0.47       | 480            | 380 700   |     | ≥ 55J @ 0°C                    |
| CEOOM    | 40 < t ≤ 63   | 0.16    | 0.025     | 0.020     | 0.47       | 460            | 580 ~ 760 | 15  | ≥ 51J @ -10°C<br>≥ 47J @ -20°C |
| S500ML   | 63 < t ≤ 80   | 0.16    | 0.025     | 0.020     |            | 450            | 580 ~ 760 | 13  | ≥ 40J @ -30°C                  |
|          | 80 < t ≤ 100  |         |           |           | 0.48       | 450            | 560 ~ 750 |     | ≥ 31J @ -40°C                  |
|          | 100 < t ≤ 150 |         |           |           |            | 450            | 560 ~ 750 |     | ≥ 27J @ -50°C                  |

b. Minimum values of impact energy KV2 on longitudinal test pieces. c. This value corresponds with 27 J at - 30 °C (see EN 1993-1-10). Note:

## BS EN 10025-5: 2019 - Structural Steels with Improved Atmospheric Corrosion Resistance

| Grade     | Thickness   | Chem | ical composition            | n (%)   | Max.<br>CEV | Ys          | Us          | $\mathcal{E}_L{}^a$ | Impact             |
|-----------|-------------|------|-----------------------------|---------|-------------|-------------|-------------|---------------------|--------------------|
| Grade     | (mm)        | С    | Р                           | S       | (%)         | (N/mm²)     | (N/mm²)     | (%)                 | toughness b<br>(J) |
| S235J0W   | 3 ≤ t ≤ 12  | 0.13 | max. 0.035                  | 0.035   | 0.44        | 225         | 360 ~ 510   | 26                  | ≥ 27J @ 0°C        |
| S235J2W   | 3 ≤ t ≤ 12  | 0.13 | max. 0.035                  | 0.030   | 0.44        | 225         | 360~510     | 26                  | ≥ 27J @ -20°C      |
| S355J0WP  | 3 ≤ t ≤ 16  | 0.12 | 0.060 ~ 0.15                | 0.035   | 0.52        | 355         | 470 ~ 630 d | 22                  | ≥ 27J @ 0°C        |
| 333310001 | 16 < t ≤ 40 | 0.12 | 2 0.060 0.15 0.035 0.52 345 | 470 030 | 22          | ≥ 2/1 @ 0°C |             |                     |                    |
| S355J2WP  | 3 ≤ t ≤ 16  | 0.12 | 0.060 ~ 0.15                | 0.030   | 0.52        | 355         | 470 ~ 620   | 20                  | > 271 @ 2000       |
| 3333JZWP  | 16 < t ≤ 40 | 0.12 | 0.060 0.15                  | 0.030   | 0.52        | 345         | 470 ~ 630   | 20                  | ≥ 27J @ -20°C      |
| S355J0W   | 3 ≤ t ≤ 12  | 0.16 | max. 0.035                  | 0.035   | 0.52        | 355         | 470 ~ 630   | 22                  | ≥ 27J @ 0°C        |
| S355J2W   | 3 ≤ t ≤ 12  | 0.16 | max. 0.030                  | 0.030   | 0.52        | 355         | 470 ~ 630   | 22                  | ≥ 27J @ -20°C      |
| S355K2W   | 3 ≤ t ≤ 12  | 0.16 | max. 0.030                  | 0.030   | 0.52        | 355         | 470 ~ 630   | 22                  | ≥ 40J @ -20°C °    |
| S355J4W   | 3 ≤ t ≤ 12  | 0.16 | max. 0.030                  | 0.025   | 0.52        | 355         | 470 ~ 630   | 22                  | ≥ 27J @ -40°C      |
| S355J5W   | 3 ≤ t ≤ 12  | 0.16 | max. 0.030                  | 0.025   | 0.52        | 355         | 470 ~ 630   | 22                  | ≥ 27J @ -50°C      |
| S420J0W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.035                  | 0.035   | 0.52        | 420         | 500 ~ 660   | 19                  | ≥ 27J @ 0°C        |
| S420J2W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.030                  | 0.030   | 0.52        | 420         | 500 ~ 660   | 19                  | ≥ 27J @ -20°C      |
| S420K2W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.030                  | 0.030   | 0.52        | 420         | 500 ~ 660   | 19                  | ≥ 40J @ -20°C      |
| S420J4W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.030                  | 0.025   | 0.52        | 420         | 500 ~ 660   | 19                  | ≥ 27J @ -40°C      |
| S420J5W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.030                  | 0.025   | 0.52        | 420         | 500 ~ 660   | 19                  | ≥ 27J @ -50°C      |
| S460J0W   | 3 ≤ t ≤ 12  | 0.20 | max. 0.035                  | 0.035   | 0.52        | 460         | 530 ~ 710   | 17                  | ≥ 27J @ 0°C        |

| Grade   | Thickness  | Chem | ical composition | n (%) | Max.<br>CEV | Ys      | Us          | ε <sub>L</sub> a | Impact<br>toughness b |
|---------|------------|------|------------------|-------|-------------|---------|-------------|------------------|-----------------------|
|         | (mm)       | С    | Р                | S     | (%)         | (N/mm²) | (N/mm²) (%) | (%)              | (J)                   |
| S460J2W | 3 ≤ t ≤ 12 | 0.20 | max. 0.030       | 0.030 | 0.52        | 460     | 530 ~ 710   | 17               | ≥ 27J @ -20°C         |
| S460K2W | 3 ≤ t ≤ 12 | 0.20 | max. 0.030       | 0.030 | 0.52        | 460     | 530 ~ 710   | 17               | ≥ 40J @ -20°C         |
| S460J4W | 3 ≤ t ≤ 12 | 0.20 | max. 0.030       | 0.025 | 0.52        | 460     | 530 ~ 710   | 17               | ≥ 27J @ -40°C         |
| S460J5W | 3 ≤ t ≤ 12 | 0.20 | max. 0.030       | 0.025 | 0.52        | 460     | 530 ~ 710   | 17               | ≥ 27J @ -50°C         |

Note: a. Longitudinal values.

- b. Minimum values of impact energy KV2 on longitudinal test pieces.
- c. This value corresponds with 27 J at 30 °C (see EN 1993-1-10).
- d. applicable up to 12mm.

BS EN 10025-6: 2019 – High Strength Structural Steels in the Quenched and Tempered Condition

| Grade   | Thickness     | Chemica | al compos | ition (%) | Max.<br>CEV | Ys      | Us         | ε <sub>L</sub> | Impact<br>toughness b          |
|---------|---------------|---------|-----------|-----------|-------------|---------|------------|----------------|--------------------------------|
| Grade   | (mm)          | С       | Р         | S         | (%)         | (N/mm²) | (N/mm²)    | (%)            | (J)                            |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 460     | FF0 ~ 730  |                |                                |
| S460Q   | 50 < t ≤ 100  | 0.20    | 0.025     | 0.015     | 0.48        | 440     | 550 ~ 720  | 17             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C   |
|         | 100 < t ≤ 150 |         |           |           | 0.50        | 400     | 500 ~ 670  |                | _ 300 @ 20 C                   |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 460     | 550 - 700  |                | ≥ 50J @ 0°C                    |
| S460QL  | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.48        | 440     | 550 ~ 720  | 17             | ≥ 40J @ -20°C                  |
|         | 100 < t ≤ 150 |         |           |           | 0.50        | 400     | 500 ~ 670  |                | ≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 460     | 550 et 720 |                | ≥ 60J @ 0°C                    |
| S460QL1 | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.48        | 440     | 550 ~ 720  | 17             | ≥ 50J @ -20°C<br>≥ 40J @ -40°C |
|         | 100 < t ≤ 150 |         |           |           | 0.50        | 400     | 500 ~ 670  |                | ≥ 30J @ -60°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 500     | 500 - 770  |                |                                |
| S500Q   | 50 < t ≤ 100  | 0.20    | 0.025     | 0.015     | 0.70        | 480     | 590 ~ 770  | 17             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C   |
|         | 100 < t ≤ 150 |         |           |           | 0.70        | 440     | 540 ~ 720  |                | ≥ 300 @ -20 €                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 500     | 500 er 770 |                | ≥ 50J @ 0°C                    |
| S500QL  | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.70        | 480     | 590 ~ 770  | 17             | ≥ 40J @ -20°C                  |
|         | 100 < t ≤ 150 |         |           |           | 0.70        | 440     | 540 ~ 720  |                | ≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.47        | 500     | 500 et 770 |                | ≥ 60J @ 0°C                    |
| S500QL1 | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.70        | 480     | 590 ~ 770  | 17             | ≥ 50J @ -20°C<br>≥ 40J @ -40°C |
|         | 100 < t ≤ 150 |         |           |           | 0.70        | 440     | 540 ~ 720  |                | ≥ 30J @ -60°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.65        | 550     | 640 ** 830 |                |                                |
| S550Q   | 50 < t ≤ 100  | 0.20    | 0.025     | 0.015     | 0.77        | 530     | 640 ~ 820  | 16             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C   |
|         | 100 < t ≤ 150 |         |           |           | 0.83        | 490     | 590 ~ 770  |                | <u></u>                        |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.65        | 550     | 640 ** 830 |                | ≥ 50J @ 0°C                    |
| S550QL  | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.77        | 530     | 640 ~ 820  | 16             | ≥ 40J @ -20°C                  |
|         | 100 < t ≤ 150 |         |           |           | 0.83        | 490     | 590 ~ 770  |                | ≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.65        | 550     | 640 0: 030 |                | ≥ 60J @ 0°C                    |
| S550QL1 | 50 < t ≤ 100  | 0.20    | 0.020     | 0.010     | 0.77        | 530     | 640 ~ 820  | 16             | ≥ 50J @ -20°C<br>≥ 40 @ -40°C  |
|         | 100 < t ≤ 150 |         |           |           | 0.83        | 490     | 590 ~ 770  |                | ≥ 30J @ -60°C                  |
|         | 3 ≤ t ≤ 50    |         |           |           | 0.65        | 620     | 700 ~ 890  |                |                                |
| S620Q   | 50 < t ≤ 100  | 0.20    | 0.025     | 0.015     | 0.77        | 580     |            | 15             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C   |
|         | 100 < t ≤ 150 |         |           |           | 0.83        | 560     | 650 ~ 830  |                | _ 30J @ -20°C                  |

| Grade   | Thickness     | Chemic | al compos | ition (%) | Max.<br>CEV | Y <sub>s</sub>       | Us        | $\epsilon_{L}$ | Impact<br>toughness b          |
|---------|---------------|--------|-----------|-----------|-------------|----------------------|-----------|----------------|--------------------------------|
| Grade   | (mm)          | С      | Р         | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)            | (J)                            |
|         | 3 ≤ t ≤ 50    |        |           |           | 0.65        | 620                  | 700 ~ 890 |                | ≥ 50J @ 0°C                    |
| S620QL  | 50 < t ≤ 100  | 0.20   | 0.020     | 0.010     | 0.77        | 580                  | 700 830   | 15             | ≥ 40J @ -20°C                  |
|         | 100 < t ≤ 150 |        |           |           | 0.83        | 560                  | 650 ~ 830 |                | ≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 50    |        |           |           | 0.65        | 620                  | 700 ~ 890 |                | ≥ 60J @ 0°C                    |
| S620QL1 | 50 < t ≤ 100  | 0.20   | 0.020     | 0.010     | 0.77        | 580                  | 700 890   | 15             | ≥ 50J @ -20°C<br>≥ 40J @ -40°C |
| 1       | 100 < t ≤ 150 |        |           |           | 0.83        | 560                  | 650 ~ 830 |                | ≥ 30J @ -60°C                  |
|         | 3 ≤ t ≤ 50    |        |           |           | 0.65        | 690                  | 770 ~ 940 |                |                                |
| S690Q   | 50 < t ≤ 100  | 0.20   | 0.025     | 0.015     | 0.77        | 650                  | 760 ~ 930 | 14             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C   |
|         | 100 < t ≤ 150 |        |           |           | 0.83        | 630                  | 710 ~ 900 |                | _ 563 @ 25 6                   |
|         | 3 ≤ t ≤ 50    |        |           |           | 0.65        | 690                  | 770 ~ 940 |                | ≥ 50J @ 0°C                    |
| S690QL  | 50 < t ≤ 100  | 0.20   | 0.020     | 0.010     | 0.77        | 650                  | 760 ~ 930 | 14             | ≥ 40J @ -20°C                  |
|         | 100 < t ≤ 150 |        |           |           | 0.83        | 630                  | 710 ~ 900 |                | ≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 50    |        |           |           | 0.65        | 690                  | 770 ~ 940 |                | ≥ 60J @ 0°C                    |
| S690QL1 | 50 < t ≤ 100  | 0.20   | 0.020     | 0.010     | 0.77        | 650                  | 760 ~ 930 | 14             | ≥ 50J @ -20°C<br>≥ 40J @ -40°C |
|         | 100 < t ≤ 150 |        |           |           | 0.83        | 630                  | 710 ~ 900 |                | ≥ 401 @ -40°C<br>≥ 30J @ -60°C |

Note: b. Minimum values of impact energy KV2 on longitudinal test pieces.

with dimensional and/or mass tolerances in accordance with:-

BS EN 10029:2010 – Tolerance for hot rolled steel plate over 3mm thick

| Nominal      |         | Tolerances on the nominal thickness |       |       |       |       |         |       |  |  |  |  |  |  |
|--------------|---------|-------------------------------------|-------|-------|-------|-------|---------|-------|--|--|--|--|--|--|
| thickness    | Class A |                                     | Cla   | ss B  | Cla   | ss C  | Class D |       |  |  |  |  |  |  |
| t (mm)       | Lower   | Upper                               | Lower | Upper | Lower | Upper | Lower   | Upper |  |  |  |  |  |  |
| 8 ≤ t ≤ 15   | -0.5    | +0.9                                | -0.3  | +1.1  | 0.0   | +1.4  | -0.7    | +0.7  |  |  |  |  |  |  |
| 15 < t ≤ 25  | -0.6    | +1.0                                | -0.3  | +1.3  | 0.0   | +1.6  | -0.8    | +0.8  |  |  |  |  |  |  |
| 25 < t ≤ 40  | -0.7    | +1.3                                | -0.3  | +1.7  | 0.0   | +2.0  | -1.0    | +1.0  |  |  |  |  |  |  |
| 40 < t ≤ 80  | -0.9    | +1.7                                | -0.3  | +2.3  | 0.0   | +2.6  | -1.3    | +1.3  |  |  |  |  |  |  |
| 80 < t ≤ 150 | -1.1    | +2.1                                | -0.3  | +2.9  | 0.0   | +3.2  | -1.6    | +1.6  |  |  |  |  |  |  |

BS EN 10051:2010 – Tolerance for continuously hot-rolled strip and sheet / plate cut from wide strip of non-alloy and alloy steels

| Nominal             | Minimum yield                        |          | Tolerances for a       | nominal width w        |          |
|---------------------|--------------------------------------|----------|------------------------|------------------------|----------|
| thickness<br>t (mm) | strength<br>R <sub>e</sub> (N/mm²)   | w ≤ 1200 | 1200 < <i>w</i> ≤ 1500 | 1500 < <i>w</i> ≤ 1800 | w > 1800 |
| 8.0 ≤ t ≤ 10.0      |                                      | ± 0.32   | ± 0.33                 | ± 0.34                 | ± 0.40   |
| 10.0 < t ≤ 12.5     | R <sub>e</sub> ≤ 300<br>(Category A) | ± 0.35   | ± 0.36                 | ± 0.37                 | ± 0.43   |
| 12.5 < t ≤ 15.0     |                                      | ± 0.37   | ± 0.38                 | ± 0.40                 | ± 0.46   |
| 15.0 < t ≤ 25.0     |                                      | ± 0.40   | ± 0.42                 | ± 0.47                 | ± 0.50   |
| 8.0 ≤ t ≤ 10.0      |                                      | ± 0.37   | ± 0.38                 | ± 0.39                 | ± 0.46   |
| 10.0 < t ≤ 12.5     | 300 ≤ R <sub>e</sub> ≤ 360           | ± 0.40   | ± 0.41                 | ± 0.43                 | ± 0.49   |
| 12.5 < t ≤ 15.0     | (Category B)                         | ± 0.43   | ± 0.44                 | ± 0.46                 | ± 0.53   |
| 15.0 < t ≤ 25.0     |                                      | ± 0.46   | ± 0.48                 | ± 0.52                 | ± 0.58   |
| 8.0 ≤ t ≤ 10.0      |                                      | ± 0.42   | ± 0.43                 | ± 0.44                 | ± 0.52   |
| 10.0 < t ≤ 12.5     | $360 \le R_e \le 420$ (Category C)   | ± 0.46   | ± 0.47                 | ± 0.48                 | ± 0.56   |
| 12.5 < t ≤ 15.0     |                                      | ± 0.48   | ± 0.49                 | ± 0.52                 | ± 0.60   |
| 15.0 < t ≤ 25.0     |                                      | ± 0.52   | ± 0.55                 | ± 0.59                 | ± 0.65   |

#### A.1.2 Acceptable British/European structural steel: sections

BS EN 10025-2: 2019 - Non-alloy Structural Steel f

|                     | Thickness   | Chemic | al composit                             | tion (%) | Max.              | Ys           | U <sub>s</sub> | ε <sub>L</sub> a | Impact                        |  |  |  |  |  |
|---------------------|-------------|--------|-----------------------------------------|----------|-------------------|--------------|----------------|------------------|-------------------------------|--|--|--|--|--|
| Grade               | (mm)        | С      | Pe                                      | S e      | CEV<br>(%)        | (N/mm²)      | (N/mm²)        | (%)              | toughness <sup>b</sup><br>(J) |  |  |  |  |  |
| S235JR              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S235J0              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S235J2              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S275JR              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S275J0              | 3 ≤ t ≤ 63  |        |                                         | Dofo     | - +0 DC FN        | 1002F 2 in ( | Costion A 1 1  |                  |                               |  |  |  |  |  |
| S275J2              | 3 ≤ t ≤ 63  |        | Refer to BS EN 10025-2 in Section A.1.1 |          |                   |              |                |                  |                               |  |  |  |  |  |
| S355JR              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S355J0              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S355J2              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
| S355K2              | 3 ≤ t ≤ 63  |        |                                         |          |                   |              |                |                  |                               |  |  |  |  |  |
|                     | 3 ≤ t ≤ 16  | 0.20   |                                         |          | 0.47              | 460          |                |                  |                               |  |  |  |  |  |
| S460JR              | 16 < t ≤ 40 | 0.20 d | 0.030                                   | 0.030    | 0.47 <sup>d</sup> | 440          | 550 ~ 720      | 17               | ≥ 27J @ 20°C                  |  |  |  |  |  |
|                     | 40 < t ≤ 63 | 0.22   |                                         |          | 0.49              | 420          |                |                  |                               |  |  |  |  |  |
|                     | 3 ≤ t ≤ 16  | 0.20   |                                         |          | 0.47              | 460          |                |                  |                               |  |  |  |  |  |
| S460J0 <sup>j</sup> | 16 < t ≤ 40 | 0.20 d | 0.030                                   | 0.030    | 0.47 <sup>d</sup> | 440          | 550 ~ 720      | 17               | ≥ 27J @ 0°C                   |  |  |  |  |  |
|                     | 40 < t ≤ 63 | 0.22   |                                         |          | 0.49              | 420          |                |                  |                               |  |  |  |  |  |
|                     | 3 ≤ t ≤ 16  | 0.20   |                                         |          | 0.47              | 460          |                |                  |                               |  |  |  |  |  |
| S460J2 <sup>j</sup> | 16 < t ≤ 40 | 0.20 d | 0.030                                   | 0.030    | 0.47 <sup>d</sup> | 440          | 550 ~ 720      | 17               | ≥ 27J @ -20°C                 |  |  |  |  |  |
|                     | 40 < t ≤ 63 | 0.22   |                                         |          | 0.49              | 420          |                |                  |                               |  |  |  |  |  |
|                     | 3 ≤ t ≤ 16  | 0.20   |                                         |          | 0.47              | 460          |                |                  |                               |  |  |  |  |  |
| S460K2              | 16 < t ≤ 40 | 0.20 d | 0.030                                   | 0.030    | 0.47 <sup>d</sup> | 440          | 550 ~ 720      | 17               | ≥ 40J @ 20°C                  |  |  |  |  |  |
|                     | 40 < t ≤ 63 | 0.22   |                                         |          | 0.49              | 420          |                |                  |                               |  |  |  |  |  |
|                     | 3 ≤ t ≤ 16  | 0.20   |                                         |          | 0.49              | 500          |                |                  |                               |  |  |  |  |  |
| S500J0              | 16 < t ≤ 40 | 0.20   | 0.030                                   | 0.030    | 0.49              | 480          | 580 ~ 760      | 15               | ≥ 27-J @ 0°C                  |  |  |  |  |  |
|                     | 40 < t ≤ 63 | 0.22   |                                         | 0.030    | 0.49              | 460          |                |                  |                               |  |  |  |  |  |

Note: a. The direction parallel to the rolling direction applies.

#### BS EN 10025-3: 2019 - Normalized Rolled Weldable Fine Grain Structural Steels

| Cuada  | Thickness | Chemic | al composi                              | tion (%) | Max.        | Y <sub>s</sub>       | Us                   | ε <sub>L</sub> | Impact           |  |  |  |  |  |
|--------|-----------|--------|-----------------------------------------|----------|-------------|----------------------|----------------------|----------------|------------------|--|--|--|--|--|
| Grade  | (mm)      | С      | Рe                                      | S e      | (%)         | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)            | toughness<br>(J) |  |  |  |  |  |
| S275N  | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |
| S275NL | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |
| S355N  | t ≤ 63    |        | Refer to BS EN 10025-3 in Section A.1.1 |          |             |                      |                      |                |                  |  |  |  |  |  |
| S355NL | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |
| S420N  | t ≤ 63    |        |                                         | кеј      | EI LU BS EI | N 10025-5 III        | Section A.1.1        |                |                  |  |  |  |  |  |
| S420NL | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |
| S460N  | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |
| S460NL | t ≤ 63    |        |                                         |          |             |                      |                      |                |                  |  |  |  |  |  |

Note: e. For long products the P and S content can be 0.005% higher.

b. Minimum values of impact energy KV2 on longitudinal test pieces.

d. For nominal thickness > 30 mm: C = 0.22% max, Max. CEV = 0.49%.

e. For long products the P and S content can be 0.005% higher.

f. This document does not apply to structural hollow sections and tubes.

BS EN 10025-4: 2019 - Thermo-mechanical Rolled Weldable Fine Grain Structural Steels

| Crada  | Thickness | Chemica | al compos                               | ition (%) | Max.     | Max. CEV (N/mm²) | Ys                 | Ys    | Ys               | Us | ει | Impact |  |
|--------|-----------|---------|-----------------------------------------|-----------|----------|------------------|--------------------|-------|------------------|----|----|--------|--|
| Grade  | (mm)      | С       | Рe                                      | S e       |          |                  | (N/mm²)            | (%)   | toughness<br>(J) |    |    |        |  |
| S275M  | t ≤ 63    | 0.15    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S275ML | t ≤ 63    | 0.15    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S355M  | t ≤ 63    | 0.16    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S355ML | t ≤ 63    | 0.16    | Refer to BS EN 10025-4 in Section A.1.1 |           |          |                  |                    |       |                  |    |    |        |  |
| S420M  | t ≤ 63    | 0.18    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S420ML | t ≤ 63    | 0.18    |                                         |           | Kejer to | BS EN 10023      | 5-4 III SECLIOII . | A.1.1 |                  |    |    |        |  |
| S460M  | t ≤ 63    | 0.18    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S460ML | t ≤ 63    | 0.18    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S500M  | t ≤ 63    | 0.18    |                                         |           |          |                  |                    |       |                  |    |    |        |  |
| S500ML | t ≤ 63    | 0.18    | 1                                       |           |          |                  |                    |       |                  |    |    |        |  |

Note: e. For long products the P and S content can be 0.005% higher.

### BS EN 10025-5: 2019 - Structural Steels with Improved Atmospheric Corrosion Resistance

| Crada    | Thickness   | Chem | ical composition                        | n (%) | Max.       | Y <sub>s</sub> | Us            | €L <sup>a</sup> | Impact                        |  |  |  |  |
|----------|-------------|------|-----------------------------------------|-------|------------|----------------|---------------|-----------------|-------------------------------|--|--|--|--|
| Grade    | (mm)        | С    | P e                                     | S e   | CEV<br>(%) | (N/mm²)        | (N/mm²)       | (%)             | toughness <sup>b</sup><br>(J) |  |  |  |  |
| S355J0WP | 3 ≤ t ≤ 40  |      |                                         | Dofo  | r to DC TA | 1 1002F F in 1 | Costion A 1 1 |                 |                               |  |  |  |  |
| S355J2WP | t ≤ 40      |      | Refer to BS EN 10025-5 in Section A.1.1 |       |            |                |               |                 |                               |  |  |  |  |
|          | 3 ≤ t ≤ 16  |      |                                         |       |            | 355            |               | 22              |                               |  |  |  |  |
| S355J5W  | 16 < t ≤ 40 | 0.16 | max. 0.030                              | 0.025 | 0.52       | 345            | 470 ~ 630     | 22              | ≥ 27J @ -50°C                 |  |  |  |  |
|          | 40 < t ≤ 63 |      |                                         |       |            | 335            |               | 21              |                               |  |  |  |  |
|          | 3 ≤ t ≤ 16  |      |                                         |       |            | 420            |               | 10              |                               |  |  |  |  |
| S420J4W  | 16 < t ≤ 40 | 0.20 | max. 0.030                              | 0.025 | 0.52       | 400            | 500 ~ 660     | 19              | ≥ 27J @ -40°C                 |  |  |  |  |
|          | 40 < t ≤ 63 |      |                                         |       |            | 390            |               | 18              |                               |  |  |  |  |
|          | 3 ≤ t ≤ 16  |      |                                         |       |            | 420            |               | 10              |                               |  |  |  |  |
| S420J5W  | 16 < t ≤ 40 | 0.20 | max. 0.030                              | 0.025 | 0.52       | 400            | 500 ~ 660     | 19              | ≥ 27J @ -50°C                 |  |  |  |  |
|          | 40 < t ≤ 63 |      |                                         |       |            | 390            |               | 18              |                               |  |  |  |  |
|          | 3 ≤ t ≤ 16  |      |                                         |       |            | 460            |               | 17              |                               |  |  |  |  |
| S460J4W  | 16 < t ≤ 40 | 0.20 | max. 0.030                              | 0.025 | 0.52       | 440            | 530 ~ 710     | 17              | ≥ 27J @ -40°C                 |  |  |  |  |
|          | 40 < t ≤ 63 |      |                                         |       |            | 430            |               | 16              |                               |  |  |  |  |
|          | 3 ≤ t ≤ 16  |      |                                         |       |            | 460            |               | 17              |                               |  |  |  |  |
| S460J5W  | 16 < t ≤ 40 | 0.20 | max. 0.030                              | 0.025 | 0.52       | 440            | 530 ~ 710     | 1/              | ≥ 27J @ -50°C                 |  |  |  |  |
|          | 40 < t ≤ 63 |      |                                         |       |            | 430            |               | 16              |                               |  |  |  |  |

Note: a. Longitudinal values.

b. Minimum values of impact energy KV2 on longitudinal test pieces.

e. For long products the P and S content can be 0.005% higher.

#### with dimensional and/or mass tolerances in accordance with:-

• BS EN 10024

• BS EN 10034

• BS EN 10055

• BS EN 10056-2

• BS EN 10279

## A.1.3 Acceptable British/European structural steel: hollow sections

BS EN 10210-1: 2006 - Hot finished non-alloy and fine grain steels

| Grade    | Thickness           | Chemic | al compos | ition (%) | Max.<br>CEV | Ys      | Us        | ε <sub>L</sub> a | Impact<br>toughness |
|----------|---------------------|--------|-----------|-----------|-------------|---------|-----------|------------------|---------------------|
| Grade    | (mm)                | С      | Р         | S         | (%)         | (N/mm²) | (N/mm²)   | (%)              | (J)                 |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.37        | 235     |           |                  |                     |
| 60051011 | 16 < t ≤ 40         | 0.170  |           |           | 0.39        | 225     | 250 510   | 26               |                     |
| S235JRH  | 40 < t ≤ 63         | 0.000  | 0.040     | 0.040     | 0.41 b      | 215     | 360 ~ 510 | 25               | ≥ 27J @ 20°C        |
|          | 63 < t ≤ 80         | 0.200  |           |           | 0.44        | 215     |           | 24               |                     |
|          | 3 ≤ t ≤ 16          | 0.300  |           |           | 0.41        | 275     |           | 22               |                     |
| 62751011 | 16 < t ≤ 40         | 0.200  | 0.025     | 0.025     | 0.43        | 265     | 440 = 560 | 23               |                     |
| S275J0H  | 40 < t ≤ 63         | 0.220  | 0.035     | 0.035     | 0.45 b      | 255     | 410 ~ 560 | 22               | ≥ 27J @ 0°C         |
|          | 63 < t ≤ 80         | 0.220  |           |           | 0.48        | 245     |           | 21               |                     |
|          | 3 ≤ t ≤ 16          | 0.300  |           |           | 0.41        | 275     |           | 22               |                     |
| 62751211 | 16 < t ≤ 40         | 0.200  | 0.020     | 0.020     | 0.43        | 265     | 440 = 560 | 23               | > 271 (0. 2000)     |
| S275J2H  | 40 < t ≤ 63         | 0.220  | 0.030     | 0.030     | 0.45 b      | 255     | 410 ~ 560 | 22               | ≥ 27J @-20°C        |
|          | 63 < t ≤ 80         | 0.220  |           |           | 0.48        | 245     |           | 21               |                     |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.40        | 275     |           |                  |                     |
| S275NH   | 16 < t ≤ 40         | 0.200  | 0.035     | 0.030     | 0.40        | 265     | 370 ~ 510 | 24               | ≥ 40J @-20°C °      |
|          | 40 < t ≤ 65         |        |           |           | 0.40        | 255     |           |                  |                     |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.40        | 275     |           |                  |                     |
| S275NLH  | 5275NLH 16 < t ≤ 40 | 0.200  | 0.030     | 0.025     | 0.40        | 265     | 370 ~ 510 | 24               | ≥ 27J @-50°C        |
| 40       | 40 < t ≤ 65         |        |           |           | 0.40        | 255     |           |                  |                     |
|          | 3 ≤ t ≤ 16          | 0.220  |           | 0.035     | 0.45        | 355     |           | 22               |                     |
| 63551011 | 16 < t ≤ 40         | 0.220  | 0.035     |           | 0.47        | 345     | 470 ~ 630 | 22               | > 271 0 000         |
| S355J0H  | 40 < t ≤ 63         | 0.220  | 0.035     | 0.035     | 0.50 b      | 335     | 470 - 630 | 21 277 @ 0°C     | ≥ 27J @ 0°C         |
|          | 63 < t ≤ 80         | 0.220  |           |           | 0.53        | 325     |           | 20               |                     |
|          | 3 ≤ t ≤ 16          | 0.220  |           |           | 0.45        | 355     |           | 22               |                     |
| S355J2H  | 16 < t ≤ 40         | 0.220  | 0.030     | 0.030     | 0.47        | 345     | 470 ~ 630 | 22               | > 271 @ 2000        |
| 33331211 | 40 < t ≤ 63         | 0.220  | 0.030     | 0.030     | 0.50 b      | 335     | 470 ~ 630 | 21               | ≥ 27J @-20°C        |
|          | 63 < t ≤ 80         | 0.220  |           |           | 0.53        | 325     |           | 20               |                     |
|          | 3 ≤ t ≤ 16          | 0.220  |           |           | 0.45        | 355     |           | 22               |                     |
| S355K2H  | 16 < t ≤ 40         | 0.220  | 0.020     | 0.020     | 0.47        | 345     | 470 ~ 630 | 22               | ≥ 40J @-20°C °      |
| 3333NZII | 40 < t ≤ 63         | 0.220  | 0.030     | 0.030     | 0.50 b      | 335     | 470 630   | 21               | ≥ 401 @-20°C°       |
|          | 63 < t ≤ 80         | 0.220  |           |           | 0.53        | 325     |           | 20               |                     |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.43        | 355     |           |                  |                     |
| S355NH   | 16 < t ≤ 40         | 0.200  | 0.035     | 0.030     | 0.45        | 345     | 470 ~ 630 | 22               | ≥ 40J @-20°C °      |
|          | 40 < t ≤ 65         |        |           |           | 0.43        | 335     |           |                  |                     |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.43        | 355     |           |                  |                     |
| S355NLH  | 16 < t ≤ 40         | 0.180  | 0.030     | 0.025     | 0.45        | 345     | 470 ~ 630 | 22               | ≥ 27J @-50°C        |
|          | 40 < t ≤ 65         |        |           |           | 0.45        | 335     |           |                  |                     |
|          | 3 ≤ t ≤ 16          |        |           |           | 0.50        | 420     |           |                  |                     |
| S420NH   | 16 < t ≤ 40         | 0.220  | 0.035     | 0.030     | 0.53        | 400     | 520 ~ 680 | 19               | ≥ 40J @-20°C °      |
|          | 40 < t ≤ 65         |        |           |           | 0.52        | 390     |           |                  |                     |

| Grade   | Thickness   | Chemical composition (%) |       |       | Max.<br>CEV | Y <sub>s</sub> | Us        | ε <sub>L</sub> a | Impact<br>toughness |
|---------|-------------|--------------------------|-------|-------|-------------|----------------|-----------|------------------|---------------------|
| Grade   | (mm)        | С                        | Р     | S     | (%)         | (N/mm²)        | (N/mm²)   | (%)              | (J)                 |
|         | 3 ≤ t ≤ 16  |                          |       |       | 0.50        | 420            |           |                  |                     |
| S420NH  | 16 < t ≤ 40 | 0.220                    | 0.030 | 0.025 | 0.52        | 400            | 520 ~ 680 | 19               | ≥ 27J @-50°C        |
|         | 40 < t ≤ 65 |                          |       |       |             | 390            |           |                  |                     |
|         | 3 ≤ t ≤ 16  |                          |       | 0.030 | 0.53        | 460            |           | 17               | ≥ 40J @-20°C °      |
| S460NH  | 16 < t ≤ 40 | 0.220                    | 0.035 |       | 0.55        | 440            | 540 ~ 720 |                  |                     |
|         | 40 < t ≤ 65 |                          |       |       | 0.55        | 430            |           |                  |                     |
|         | 3 ≤ t ≤ 16  |                          |       |       | 0.53        | 460            |           |                  |                     |
| S460NLH | 16 < t ≤ 40 | 0.220                    | 0.030 | 0.025 | 0.55        | 440            | 540 ~ 720 | 17               | ≥ 27J @-50°C        |
|         | 40 < t ≤ 65 |                          |       |       |             | 430            |           |                  |                     |

Note: a. Longitudinal values. Transverse values are 2 % lower.

BS EN 10219-1: 2006 – Cold formed welded structural hollow sections of non-alloy and fine grain steels

| Grade      | Thickness   | Chemic | al compos | ition (%) | Max.<br>CEV | Y <sub>s</sub> | Us        | εL   | Impact<br>toughness |
|------------|-------------|--------|-----------|-----------|-------------|----------------|-----------|------|---------------------|
| Grade      | (mm)        | С      | Р         | S         | (%)         | (N/mm²)        | (N/mm²)   | (%)  | (J)                 |
| S235JRH    | 3 ≤ t ≤ 16  | 0.17   | 0.040     | 0.040     | 0.35        | 235            | 360~510   | 24 a | ≥ 27J @ 20°C        |
| 3233JKII   | 16 < t ≤ 40 | 0.17   | 0.040     | 0.040     | 0.35        | 225            | 300 310   | 24 - | ≥ 2/1 @ 20°C        |
| S275J0H    | 3 ≤ t ≤ 16  | 0.20   | 0.035     | 0.035     | 0.40        | 275            | 410 ~ 560 | 20 b | ≥ 27J @ 0°C         |
| 32/3300    | 16 < t ≤ 40 | 0.20   | 0.035     | 0.035     | 0.40        | 265            | 410 500   | 20 - | ≥ 2/1 @ 0°C         |
| S275J2H    | 3 ≤ t ≤ 16  | 0.20   | 0.030     | 0.030     | 0.40        | 275            | 410 ~ 560 | 20 b | ≥ 27J @ -20°C       |
| 32/3/211   | 16 < t ≤ 40 | 0.20   | 0.030     | 0.030     | 0.40        | 265            | 410 500   | 20 * | ≥ 271 @ -20°C       |
| S275NH     | 3 ≤ t ≤ 16  | 0.20   | 0.035     | 0.030     | 0.40        | 275            | 370 ~ 510 | 24   | ≥ 40J @ -20°C °     |
| 32/31111   | 16 < t ≤ 40 | 0.20   | 0.055     | 0.030     | 0.40        | 265            | 370 310   | 24   | ≥ 401 @ -20°C °     |
| S275NLH    | 3 ≤ t ≤ 16  | 0.20   | 0.030     | 0.025     | 0.40        | 275            | 370 ~ 510 | 24   | ≥ 27J @ -50°C       |
| 327 SINLIT | 16 < t ≤ 40 | 0.20   | 0.030     | 0.023     | 0.40        | 265            | 370 310   | 24   | ≥ 271 @ -30°C       |
| S275MH     | 3 ≤ t ≤ 16  | 0.13   | 0.035     | 0.030     | 0.34        | 275            | 360 ~ 510 | 24   | ≥ 40J @ -20°C °     |
| 32/31/11   | 16 < t ≤ 40 | 0.13   | 0.055     | 0.030     | 0.54        | 265            | 360 310   | 24   | ≥ 403 @ -20°C °     |
| S275MLH    | 3 ≤ t ≤ 16  | 0.13   | 0.030     | 0.025     | 0.34        | 275            | 360~510   | 24   | ≥ 27J @ -50°C       |
| 32/3IVILH  | 16 < t ≤ 40 | 0.13   | 0.030     | 0.023     | 0.54        | 265            | 360 310   | 24   | ≥ 271 @ -50°C       |
| S355J0H    | 3 ≤ t ≤ 16  | 0.22   | 0.035     | 0.035     | 0.45        | 355            | 470 ~ 630 | 20 b | ≥ 27J @ 0°C         |
| 33333011   | 16 < t ≤ 40 | 0.22   | 0.033     | 0.033     | 0.43        | 345            | 470 030   | 20   | ≥ 271 @ 0°C         |
| S355J2H    | 3 ≤ t ≤ 16  | 0.22   | 0.030     | 0.030     | 0.45        | 355            | 470 ~ 630 | 20 b | ≥ 27J @ -20°C       |
| 33331211   | 16 < t ≤ 40 | 0.22   | 0.030     | 0.030     | 0.43        | 345            | 470 030   | 20   | ≥ 271 @ -20°C       |
| S355K2H    | 3 ≤ t ≤ 16  | 0.22   | 0.030     | 0.030     | 0.45        | 355            | 470 ~ 630 | 20 b | ≥ 40J @ -20°C °     |
| 3333KZH    | 16 < t ≤ 40 | 0.22   | 0.030     | 0.030     | 0.43        | 345            | 470 030   | 20   | ≥ 403 @ -20°C       |
| S355NH     | 3 ≤ t ≤ 16  | 0.20   | 0.035     | 0.030     | 0.43        | 355            | 470 ~ 630 | 22   | ≥ 40J @ -20°C °     |
| ווווענננ   | 16 < t ≤ 40 | 0.20   | 0.033     | 0.030     | 0.43        | 345            | +/0 030   | ~~   | 2 401 @ -20°C°      |
| \$255NI H  | 3 ≤ t ≤ 16  | 0.18   | 0.030     | 0.025     | 0.43        | 355            | 470 ~ 630 | 22   | ≥ 27J @ -50°C       |
| S355NLH    | 16 < t ≤ 40 | 0.10   |           |           |             | 345            | 4/0 030   |      | ∠ 2/1 @ -50°C       |

b. The value of Max. CEV apply for normal thickness  $\leq$  65 mm.

c. This value corresponds with 27 J at - 30 °C (see EN 1993-1-1).

| Grade      | Thickness        | Chemic | al composi | tion (%) | Max.<br>CEV | Ys                   | Us                   | ε <sub>L</sub> | Impact<br>toughness |
|------------|------------------|--------|------------|----------|-------------|----------------------|----------------------|----------------|---------------------|
| Grade      | (mm)             | С      | Р          | S        | (%)         | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)            | (J)                 |
| S355MH     | 3 ≤ t ≤ 16       | 0.14   | 0.035      | 0.030    | 0.39        | 355                  | 450 ~ 610            | 22             | > 401 @ 3000 t      |
| ээээмп     | 16 < t ≤ 40      | 0.14   | 0.055      | 0.030    | 0.59        | 345                  | 450 010              | 22             | ≥ 40J @ -20°C °     |
| S355MLH    | $3 \le t \le 16$ | 0.14   | 0.030      | 0.025    | 0.39        | 355                  | 450 ~ 610            | 22             | > 271 @ 5000        |
| 3333141111 | 16 < t ≤ 40      | 0.14   | 0.030      | 0.025    | 0.59        | 345                  | 450 010              | 22             | ≥ 27J @ -50°C       |
| S420MH     | $3 \le t \le 16$ | 0.16   | 0.035      | 0.030    | 0.43        | 420                  | 500 ~ 660            | 19             | ≥ 40J @ -20°C °     |
| 342010111  | 16 < t ≤ 40      | 0.10   | 0.033      | 0.030    | 0.43        | 400                  | 300 000              | 19             | ≥ 403 @ -20°C       |
| S420MLH    | $3 \le t \le 16$ | 0.16   | 0.030      | 0.025    | 0.43        | 420                  | 500 ~ 660            | 19             | ≥ 27J @ -50°C       |
| 3420IVILIT | 16 < t ≤ 40      | 0.16   | 0.030      | 0.025    | 0.43        | 400                  | 300 000              | 19             | ≥ 2/1 @ -30 ℃       |
| S460NH     | $3 \le t \le 16$ | 0.20   | 0.035      | 0.030    | 0.53        | 460                  | 540 ~ 720            | 17             | ≥ 40J @ -20°C °     |
| 34001111   | 16 < t ≤ 40      | 0.20   | 0.033      | 0.030    | 0.55        | 440                  | J40 720              | 17             | ≥ 403 @ -20°C       |
| S460NLH    | 3 ≤ t ≤ 16       | 0.20   | 0.030      | 0.025    | 0.53        | 460                  | 540 ~ 720            | 17             | ≥ 27J @ -50°C       |
| 34001111   | 16 < t ≤ 40      | 0.20   | 0.030      | 0.023    | 0.55        | 440                  | J40 720              | 17             | ≥ 2/1 @ -30°C       |
| S460MH     | $3 \le t \le 16$ | 0.16   | 0.035      | 0.030    | 0.46        | 460                  | 530 ~ 720            | 17             | ≥ 40J @ -20°C °     |
| 340010111  | 16 < t ≤ 40      | 0.10   | 0.055      | 0.030    | 0.46        | 440                  | J30 720              | 1/             | ≥ 401 @ -20°C °     |
| 2460M1 H   | $3 \le t \le 16$ | 0.16   | 0.030      | 0.025    | 0.46        | 460                  | 530 ~ 720            | 17             | ≥ 27J @ -50°C       |
| S460MLH    | 16 < t ≤ 40      | 0.10   | 0.030      | 0.025    | 0.46        | 440                  | J30 /20              | 1/             | ≥ 2/1 @ -30°C       |

Note: a. For thicknesses > 3 mm and section sizes D/T < 15 (round) and (B+H)/2T < 12,5 (square and rectangular) the minimum elongation is reduced by 2.

with dimensional and/or mass tolerances in accordance with:-

- BS EN 10210-2
- BS EN 10219-2

b. For section sizes D/T < 15 (circular) and (B+H)/2T < 12,5 (square and rectangular) the minimum elongation is reduced by 2.

c. This value corresponds with 27 J at - 30 °C (see EN 1993-1-1).

#### A.1.4 Acceptable British/European structural steel: sheet piles

BS EN 10248-1: 1996 - Hot finished non-alloy steels

| Grade    | Thickness    | Chemica | al composit | tion (%) ª | Max.<br>CEV | Ys                   | Us                   | εL  | Impact           |
|----------|--------------|---------|-------------|------------|-------------|----------------------|----------------------|-----|------------------|
| Grade    | (mm)         | С       | Р           | S          | (%)         | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | toughness<br>(J) |
| S240GP   | t ≤ 8.5      | 0.200   | 0.045       | 0.045      | ^           | 240                  | 340                  | 26  | _                |
|          | 8.5 < t ≤ 25 | 0.200   | 0.043       | 0.043      |             | 240                  | 540                  | 20  | _                |
| S270GP   | t ≤ 8.5      | 0.240   | 0.045       | 0.045      | ^           | 270                  | 410                  | 24  |                  |
| 3270GP   | 8.5 < t ≤ 25 | 0.240   | 0.045       | 0.045      |             | 270                  | 410                  | 24  | -                |
| S320GP   | t ≤ 8.5      | 0.240   | 0.045       | 0.045      | ٨           | 320                  | 440                  | 23  |                  |
| 3320GP   | 8.5 < t ≤ 25 |         |             | 0.045      | ^           | 320                  | 440                  | 23  | -                |
| S355GP   | t ≤ 8.5      | 0.240   | 0.045       | 0.045      | ٨           | 355                  | 480                  | 22  | _                |
| 3535GP   | 8.5 < t ≤ 25 | 0.240   | 0.043       | 0.045      |             | 333                  | 400                  | 22  | -                |
| S390GP   | t ≤ 8.5      | 0.240   | 0.040       | 0.040      | ^           | 390                  | 490                  | 20  |                  |
| 3390GP   | 8.5 < t ≤ 25 | 0.240   | 0.040       | 0.040      | ^           | 390                  | 490                  | 20  | -                |
| S430GP - | t ≤ 8.5      | 0.240   | 0.040       | 0.040      | ٨           | 420                  | E10                  | 10  |                  |
|          | 8.5 < t ≤ 25 | 0.240   |             |            |             | 430                  | 510                  | 19  | -                |

Note: a. Ladle analysis.

## BS EN 10249-1: 1996 – Cold formed sheet piling of non-alloy steels

| Grade   | Thickness<br>(mm) | Chemic                                   | Chemical composition (%)                |   | Max.<br>CEV | Y <sub>s</sub><br>(N/mm²) | U <sub>s</sub><br>(N/mm²) | ε <sub>ι</sub><br>(%) | Impact<br>toughness |  |  |
|---------|-------------------|------------------------------------------|-----------------------------------------|---|-------------|---------------------------|---------------------------|-----------------------|---------------------|--|--|
|         | (111111)          | C                                        | Р                                       | 5 | (%)         | (14/111111 )              | (14/111111 )              | (70)                  | (J)                 |  |  |
| S235JRC | t ≤ 25            |                                          | (70)                                    |   |             |                           |                           |                       |                     |  |  |
| S275JRC | t ≤ 25            |                                          | Refer to BS EN 10025-2 in Section A.1.1 |   |             |                           |                           |                       |                     |  |  |
| S335J0C | t ≤ 25            | Nejer to BS EN 10023 2 III Section A.1.1 |                                         |   |             |                           |                           |                       |                     |  |  |

with dimensional and/or mass tolerances in accordance with:-

- BS EN 10248-2
- BS EN 10249-2
- BS EN 10051

<sup>^</sup> To be specified by the purchaser.

## A.1.5 Acceptable British/European structural steel: solid bars

BS EN 10025-2: 2019 - Non-alloy Structural Steel

| Grade               | Thickness or<br>Diameter | Chemic | al composi | tion (%) | Max.<br>CEV  | Ys             | Us            | ε <sub>L</sub> a | Impact<br>toughness <sup>b</sup> |
|---------------------|--------------------------|--------|------------|----------|--------------|----------------|---------------|------------------|----------------------------------|
| Grade               | (mm)                     | С      | Рь         | S p      | (%)          | (N/mm²)        | (N/mm²)       | (%)              | (J)                              |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 | •                |                                  |
| S235JR              | 150 < t ≤ 200            | 0.20   | 0.025      | 0.035    | 0.40         | 185            | 240 =: 400    | 24               | > 271 (0. 2006)                  |
|                     | 200 < t ≤ 250            | 0.20   | 0.035      | 0.035    | 0.40         | 175            | 340 ~ 490     | 21               | ≥ 27J @ 20°C                     |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 | •                |                                  |
| S235J0              | 150 < t ≤ 200            | 0.47   | 0.020      | 0.020    | 0.40         | 185            | 240 =: 400    | 24               |                                  |
|                     | 200 < t ≤ 250            | 0.17   | 0.030      | 0.030    | 0.40         | 175            | 340 ~ 490     | 21               | ≥ 27J @ 0°C                      |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S235J2              | 150 < t ≤ 200            | 0.17   | 0.035      | 0.035    | 0.40         | 185            | 240 ~ 400     | 24               | > 271 (0. 2000)                  |
|                     | 200 < t ≤ 250            | 0.17   | 0.025      | 0.025    | 0.40         | 175            | 340 ~ 490     | 21               | ≥ 27J @ -20°C                    |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S275JR              | 150 < t ≤ 200            | 0.33   | 0.035      | 0.035    | 0.44         | 215            | 200 ~ 540     | 10               | > 271 @ 2000                     |
|                     | 200 < t ≤ 250            | 0.22   | 0.035      | 0.035    | 0.44         | 205            | 380 ~ 540     | 18               | ≥ 27J @ 20°C                     |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S275J0              | 150 < t ≤ 200            | 0.20   | 0.020      | 0.020    | 0.44         | 215            | 200 - 540     | 40               | > 271 0 000                      |
|                     | 200 < t ≤ 250            | 0.20   | 0.030      | 0.030    | 0.44         | 205            | 380 ~ 540     | 18               | ≥ 27J @ 0°C                      |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S275J2              | 150 < t ≤ 200            | 0.20   | 0.035      | 0.035    | 0.44         | 215            | 300 × F40     | 10               | > 271 @ 2000                     |
|                     | 200 < t ≤ 250            | 0.20   | 0.025      | 0.025    | 0.44         | 205            | 380 ~ 540     | 18               | ≥ 27J @ -20°C                    |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S355JR              | 150 < t ≤ 200            | 0.24   | 0.035      | 0.035    | 0.54         | 285            | 450 ~ 600     | 17               | > 271 @ 2000                     |
|                     | 200 < t ≤ 250            | 0.24   | 0.035      | 0.035    | 0.54         | 275            | 450 ~ 600     | 17               | ≥ 27J @ 20°C                     |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S355J0              | 150 < t ≤ 200            | 0.22   | 0.030      | 0.030    | 0.54         | 285            | 450 ~ 600     | 17               | ≥ 27J @ 0°C                      |
|                     | 200 < t ≤ 250            | 0.22   | 0.030      | 0.030    | 0.54         | 275            | 450 000       | 17               | ≥ 27J @ 0°C                      |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S355J2              | 150 < t ≤ 200            | 0.22   | 0.025      | 0.035    | 0.54         | 285            | 450 ~ 600     | 17               | > 271 @ 2000                     |
|                     | 200 < t ≤ 250            | 0.22   | 0.023      | 0.025    | 0.54         | 275            | 450 000       | 17               | ≥ 27J @ -20°C                    |
|                     | 3 ≤ t ≤ 150              |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.1 |                  |                                  |
| S355K2              | 150 < t ≤ 200            | 0.22   | 0.025      | 0.025    | 0.54         | 285            | 450 ~ 600     | 17               | ≥ 40J @ -20°C                    |
|                     | 200 < t ≤ 250            | 0.22   | 0.023      | 0.025    | 0.54         | 275            | 450 000       | 17               | ≥ 401 @ -20-€                    |
|                     | 3 ≤ t ≤ 63               |        |            | R        | efer to BS E | N 10025-2 in S | Section A.1.2 |                  |                                  |
| S460JR              | 63 < t ≤ 80              |        |            |          |              | 400            | 550 ~ 720     |                  |                                  |
| 240017              | 80 < t ≤ 100             | 0.22   | 0.030      | 0.030    | 0.49         | 390            | 330 720       | 17               | ≥ 27J @ 20°C                     |
|                     | 100 < t ≤ 150            |        |            |          |              | 390            | 530 ~ 700     |                  |                                  |
|                     | 3 ≤ t ≤ 63               |        |            | Re       | efer to BS E | N 10025-2 in S | ection A.1.2  |                  |                                  |
| S460J0 <sup>j</sup> | 63 < t ≤ 80              |        |            |          |              | 400            | 550 ~ 720     |                  |                                  |
| 340010,             | 80 < t ≤ 100             | 0.22   | 0.030      | 0.030    | 0.49         | 390            | 330 720       | 17               | ≥ 27J @ 0°C                      |
|                     | 100 < t ≤ 150            |        |            |          | 0.15         | 390            | 530 ~ 700     |                  |                                  |

| Grade               | Thickness or<br>Diameter | Chemic | al composi                              | tion (%) | Max.<br>CEV  | Y <sub>s</sub>       | Us           | ε <sub>L</sub> a | Impact<br>toughness |  |  |  |
|---------------------|--------------------------|--------|-----------------------------------------|----------|--------------|----------------------|--------------|------------------|---------------------|--|--|--|
| Grade               | (mm)                     | С      | P b                                     | S b      | (%)          | (N/mm <sup>2</sup> ) | (N/mm²)      | (%)              | (J)                 |  |  |  |
|                     | 3 ≤ t ≤ 63               |        |                                         | Re       | efer to BS E | V 10025-2 in S       | ection A.1.2 |                  |                     |  |  |  |
| S460J2 <sup>j</sup> | 63 < t ≤ 80              |        |                                         |          |              | 400                  | 550 ~ 720    |                  |                     |  |  |  |
| 340012              | 80 < t ≤ 100             | 0.22   | 0.030                                   | 0.030    | 0.49         | 390                  | 550 720      | 17               | ≥ 27J @ -20°C       |  |  |  |
|                     | 100 < t ≤ 150            |        |                                         |          |              | 390                  | 530 ~ 700    |                  |                     |  |  |  |
|                     | 3 ≤ t ≤ 63               |        | Refer to BS EN 10025-2 in Section A.1.2 |          |              |                      |              |                  |                     |  |  |  |
| S460K2              | 63 < t ≤ 80              |        |                                         |          |              | 400                  | 550 ~ 720    |                  |                     |  |  |  |
| 3400KZ              | 80 < t ≤ 100             | 0.22   | 0.030                                   | 0.030    | 0.49         | 390                  | 550 720      | 17               | ≥ 40J @ 20°C        |  |  |  |
|                     | 100 < t ≤ 150            |        |                                         |          |              | 390                  | 530 ~ 700    |                  |                     |  |  |  |
|                     | 3 ≤ t ≤ 63               |        |                                         | Re       | efer to BS E | V 10025-2 in S       | ection A.1.2 |                  |                     |  |  |  |
| SEOOIO              | 63 < t ≤ 80              |        |                                         |          |              | 450                  | E90 ~ 760    |                  |                     |  |  |  |
| S500J0 -            | 80 < t ≤ 100             | 0.22   | 0.030                                   | 0.030    | 0.49         | 450                  | 580 ~ 760    | 15               | ≥ 27-J @ 0°C        |  |  |  |
|                     | 100 < t ≤ 150            |        |                                         |          |              | 450                  | 560 ~ 750    |                  |                     |  |  |  |

Note: a. The direction parallel to the rolling direction applies.

b. For long products the P and S content can be 0.005% higher.

#### BS EN 10025-3: 2019 - Normalized Rolled Weldable Fine Grain Structural Steels

| Grade  | Thickness     | Chemic | cal composit | tion (%) | Max.<br>CEV  | Ys                   | Us            | ε <sub>L</sub> | Impact<br>toughness <sup>b</sup>                                                                 |
|--------|---------------|--------|--------------|----------|--------------|----------------------|---------------|----------------|--------------------------------------------------------------------------------------------------|
| Grade  | (mm)          | C      | P e          | S e      | (%)          | (N/mm <sup>2</sup> ) | (N/mm²)       | (%)            | (J)                                                                                              |
|        | t ≤ 150       |        |              | Re       | efer to BS E | N 10025-3 in S       | Section A.1.1 |                |                                                                                                  |
| S275N  | 150 < t ≤ 200 |        |              |          |              | 215                  | 350 ~ 480     |                | ≥ 55J @ 20°C                                                                                     |
| 32/5N  | 200 < t ≤ 250 | 0.180  | 0.030        | 0.025    | 0.42         | 205                  | 350 ~ 480     | 23             | ≥ 47J @ 0°C<br>≥ 43J @ -10°C                                                                     |
|        |               |        |              |          | _            |                      |               |                | ≥ 40J @ -20°C °                                                                                  |
|        | t ≤ 150       |        | I            | Re       | efer to BS E | N 10025-3 in S       | Section A.1.1 |                |                                                                                                  |
|        | 150 < t ≤ 200 |        |              |          |              | 215                  | 350 ~ 480     |                | ≥ 63J @ 20°C                                                                                     |
| S275NL |               |        |              |          |              |                      |               |                | ≥ 55J @ 0°C<br>≥ 51J @ -10°C                                                                     |
|        | 200 < t ≤ 250 | 0.160  | 0.025        | 0.020    | 0.42         | 205                  | 350 ~ 480     | 23             | ≥ 47J @ -20°C<br>≥ 40J @ -30°C                                                                   |
|        |               |        |              |          |              |                      |               |                | ≥ 31J @ -40°C<br>≥ 27J @ -50°C                                                                   |
|        | t ≤ 150       |        | •            | Re       | efer to BS E | N 10025-3 in S       | Section A.1.1 |                |                                                                                                  |
| S355N  | 150 < t ≤ 200 |        |              |          |              | 285                  | 450 ~ 600     |                | ≥ 55J @ 20°C                                                                                     |
| 333311 | 200 < t ≤ 250 | 0.200  | 0.030        | 0.025    | 0.45         | 275                  | 450 ~ 600     | 21             | ≥ 47J @ 0°C<br>≥ 43J @ -10°C<br>≥ 40J @ -20°C °                                                  |
|        | t ≤ 150       |        | l .          | Re       | efer to BS E | N 10025-3 in S       | Section A.1.1 |                |                                                                                                  |
|        | 150 < t ≤ 200 |        |              |          |              | 285                  | 450 ~ 600     |                | ≥ 63J @ 20°C                                                                                     |
| S355NL | 200 < t ≤ 250 | 0.180  | 0.025        | 0.020    | 0.45         | 275                  | 450 ~ 600     | 21             | ≥ 55J @ 0°C<br>≥ 51J @ -10°C<br>≥ 47J @ -20°C<br>≥ 40J @ -30°C<br>≥ 31J @ -40°C<br>≥ 27J @ -50°C |
|        | t ≤ 150       |        |              | Re       | efer to BS E | N 10025-3 in S       | Section A.1.1 |                |                                                                                                  |
| C420N  | 150 < t ≤ 200 |        |              |          |              | 330                  | 500 ~ 650     |                | ≥ 55J @ 20°C                                                                                     |
| S420N  | 200 < t ≤ 250 | 0.200  | 0.030        | 0.025    | 0.52         | 320                  | 500 ~ 650     | 18             | ≥ 47J @ 0°C<br>≥ 43J @ -10°C<br>≥ 40J @ -20°C °                                                  |

| Grade  | Thickness     | Chemic | al composit                             | tion (%) | Max.<br>CEV  | Ys             | Us            | ε <sub>L</sub> | Impact<br>toughness b                                                                            |  |  |  |
|--------|---------------|--------|-----------------------------------------|----------|--------------|----------------|---------------|----------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Grade  | (mm)          | С      | P <sup>e</sup>                          | S e      | (%)          | (N/mm²)        | (N/mm²)       | (%)            | (J)                                                                                              |  |  |  |
|        | t ≤ 150       |        |                                         | Re       | efer to BS E | N 10025-3 in S | Section A.1.1 |                |                                                                                                  |  |  |  |
|        | 150 < t ≤ 200 |        |                                         |          |              | 330            | 500 ~ 650     |                | ≥ 63J @ 20°C                                                                                     |  |  |  |
| S420NL | 200 < t ≤ 250 | 0.200  | 0.025                                   | 0.020    | 0.52         | 320            | 500 ~ 650     | 18             | ≥ 55J @ 0°C<br>≥ 51J @ -10°C<br>≥ 47J @ -20°C<br>≥ 40J @ -30°C<br>≥ 31J @ -40°C<br>≥ 27J @ -50°C |  |  |  |
|        | t ≤ 150       |        | Refer to BS EN 10025-3 in Section A.1.1 |          |              |                |               |                |                                                                                                  |  |  |  |
| S460N  | 150 < t ≤ 200 |        |                                         |          |              | 370            | 530 ~ 710     | 17             | ≥ 55J @ 20°C                                                                                     |  |  |  |
| 340011 | 200 < t ≤ 250 | 0.200  | 0.030                                   | 0.025    | 0.55         | 370            | 510 ~ 690     | 16             | ≥ 47J @ 0°C<br>≥ 43J @ -10°C<br>≥ 40J @ -20°C °                                                  |  |  |  |
|        | t ≤ 150       |        |                                         | Re       | efer to BS E | N 10025-3 in S | ection A.1.1  |                |                                                                                                  |  |  |  |
|        | 150 < t ≤ 200 |        |                                         |          |              | 370            | 530 ~ 710     | 17             | ≥ 63J @ 20°C                                                                                     |  |  |  |
| S460NL | 200 < t ≤ 250 | 0.200  | 0.025                                   | 0.020    | 0.55         | 370            | 510 ~ 690     | 16             | ≥ 55J @ 0°C<br>≥ 51J @ -10°C<br>≥ 47J @ -20°C<br>≥ 40J @ -30°C<br>≥ 31J @ -40°C<br>≥ 27J @ -50°C |  |  |  |

Note: a. The direction parallel to the rolling direction applies.

- b. Minimum values of impact energy KV2 on longitudinal test pieces.
- c. This value corresponds with 27 J at 30  $^{\circ}$ C (see EN 1993-1-10).
- e. For long products the P and S content can be 0.005% higher.

#### BS EN 10025-4: 2019 - Thermo-mechanical Rolled Weldable Fine Grain Structural Steels

| Cuada  | Thickness | Chemica | al compos                               | ition (%) | Max.     | Y <sub>s</sub>       | Us                 | ει    | Impact           |  |
|--------|-----------|---------|-----------------------------------------|-----------|----------|----------------------|--------------------|-------|------------------|--|
| Grade  | (mm)      | С       | Рe                                      | S e       | (%)      | (N/mm <sup>2</sup> ) | (N/mm²)            | (%)   | toughness<br>(J) |  |
| S275M  | t ≤ 150   | 0.15    |                                         |           |          |                      |                    |       |                  |  |
| S275ML | t ≤ 150   | 0.15    |                                         |           |          |                      |                    |       |                  |  |
| S355M  | t ≤ 150   | 0.16    |                                         |           |          |                      |                    |       |                  |  |
| S355ML | t ≤ 150   | 0.16    | Refer to BS EN 10025-4 in Section A.1.1 |           |          |                      |                    |       |                  |  |
| S420M  | t ≤ 150   | 0.18    |                                         |           |          |                      |                    |       |                  |  |
| S420ML | t ≤ 150   | 0.18    |                                         |           | кејег го | B3 EN 10023          | 5-4 III SECLIOII . | A.1.1 |                  |  |
| S460M  | t ≤ 150   | 0.18    |                                         |           |          |                      |                    |       |                  |  |
| S460ML | t ≤ 150   | 0.18    |                                         |           |          |                      |                    |       |                  |  |
| S500M  | t ≤ 150   | 0.18    |                                         |           |          |                      |                    |       |                  |  |
| S500ML | t ≤ 150   | 0.18    |                                         |           |          |                      |                    |       |                  |  |

Note: e. For long products the P and S content can be 0.005% higher.

BS EN 10025-5: 2019 - Structural Steels with Improved Atmospheric Corrosion Resistance

| Crada       | Thickness     | Chem | ical compositi | on (%) | Max.       | Ys                   | Us            | ει <sup>a</sup> | Impact<br>toughness b |
|-------------|---------------|------|----------------|--------|------------|----------------------|---------------|-----------------|-----------------------|
| Grade       | (mm)          | С    | P e            | S e    | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²)       | (%)             | (J)                   |
| S355J0WP    | 3 ≤ t ≤ 40    |      | •              | Dofo   | r to DC FA | 1 1002F F in         | Costion A 1 1 |                 |                       |
| S355J2WP    | 3 ≤ t ≤ 40    |      |                | кеје   | T LU BS EN | 1 10025-5 111 .      | Section A.1.1 |                 |                       |
|             | 3 ≤ t ≤ 63    |      |                | Refe   | r to BS EN | l 10025-5 in S       | Section A.1.2 |                 |                       |
| S355J5W     | 63 < t ≤ 80   |      |                |        |            | 325                  | 470 ~ 630     | 20              |                       |
| 33333344    | 80 < t ≤ 100  | 0.16 | max. 0.030     | 0.025  | 0.52       | 315                  | 470 030       | 20              | ≥ 27J @ -50°C         |
|             | 100 < t ≤ 150 |      |                |        |            | 295                  | 450 ~ 600     | 18              |                       |
|             | 3 ≤ t ≤ 16    |      |                |        |            | 420                  |               | 19              |                       |
|             | 16 < t ≤ 40   |      |                |        |            | 400                  |               | 19              |                       |
| C42010W/    | 40 < t ≤ 63   | 0.20 | may 0.035      | 0.035  | 0.53       | 390                  | 500 ~ 660     | 18              | > 271 @ 000           |
| S420J0W     | 63 < t ≤ 80   | 0.20 | max. 0.035     | 0.035  | 0.52       | 380                  |               | 17              | ≥ 27J @ 0°C           |
|             | 80 < t ≤ 100  |      |                |        |            | 370                  |               | 17              |                       |
|             | 100 < t ≤ 150 |      |                |        |            | 365                  | 460 ~ 620     | 16              |                       |
|             | 3 ≤ t ≤ 16    |      |                |        |            | 420                  |               | 10              |                       |
|             | 16 < t ≤ 40   |      |                |        |            | 400                  |               | 19              |                       |
|             | 40 < t ≤ 63   |      |                |        |            | 390                  | 500 ~ 660     | 18              |                       |
| S420J2W     | 63 < t ≤ 80   | 0.20 | max. 0.030     | 0.030  | 0.52       | 380                  |               |                 | ≥ 27J @ -20°C         |
|             | 80 < t ≤ 100  |      |                |        |            | 370                  |               | 17              |                       |
|             | 100 < t ≤ 150 |      |                |        |            | 365                  | 460 ~ 620     | 16              |                       |
|             | 3 ≤ t ≤ 16    |      |                |        |            | 420                  |               |                 |                       |
|             | 16 < t ≤ 40   |      |                |        |            | 400                  |               | 19              |                       |
|             | 40 < t ≤ 63   |      |                |        |            | 390                  | 500 ~ 660     | 18              |                       |
| S420K2W     | 63 < t ≤ 80   | 0.20 | max. 0.030     | 0.030  | 0.52       | 380                  |               |                 | ≥ 40J @ -20°C         |
|             | 80 < t ≤ 100  |      |                |        |            | 370                  |               | 17              | l                     |
|             | 100 < t ≤ 150 |      |                |        |            | 365                  | 460 ~ 620     | 16              |                       |
|             | 3 ≤ t ≤ 63    |      |                | Refe   | r to BS EN | 1 10025-5 in S       | Section A.1.2 |                 | I                     |
|             | 63 < t ≤ 80   |      |                |        |            | 380                  |               |                 |                       |
| S420J4W     | 80 < t ≤ 100  | 0.20 | max. 0.030     | 0.025  | 0.52       | 370                  | 500 ~ 660     | 17              | ≥ 27J @ -40°C         |
|             | 100 < t ≤ 150 |      |                |        |            | 365                  | 460 ~ 620     | 16              |                       |
|             | 3 ≤ t ≤ 63    |      | L              | Refe   | r to BS EN |                      | Section A.1.2 |                 |                       |
|             | 63 < t ≤ 80   |      |                |        |            | 380                  |               |                 |                       |
| S420J5W     | 80 < t ≤ 100  | 0.20 | max. 0.030     | 0.025  | 0.52       | 370                  | 500 ~ 660     | 17              | ≥ 27J @ -50°C         |
|             | 100 < t ≤ 150 |      |                |        |            | 365                  | 460 ~ 620     | 16              |                       |
|             | 3 ≤ t ≤ 16    |      |                |        |            | 460                  |               |                 |                       |
|             | 16 < t ≤ 40   |      |                |        |            | 440                  |               | 17              |                       |
|             | 40 < t ≤ 63   |      |                |        |            | 430                  | 530 ~ 710     | 16              |                       |
| S460J0W     | 63 < t ≤ 80   | 0.20 | max. 0.035     | 0.035  | 0.52       | 410                  | 0             |                 | ≥ 27J @ 0°C           |
|             | 80 < t ≤ 100  |      |                |        |            | 400                  |               | 15              |                       |
|             | 100 < t ≤ 150 |      |                |        |            | 385                  | 490 ~ 660     | 14              |                       |
| To he conti |               |      | l              |        |            |                      |               |                 |                       |

| Grade    | Thickness     | Chem | ical compositi | on (%) | Max.<br>CEV | Ys           | Us            | ε <sub>L</sub> a | Impact                        |
|----------|---------------|------|----------------|--------|-------------|--------------|---------------|------------------|-------------------------------|
| Grade    | (mm)          | С    | P e            | S e    | (%)         | (N/mm²)      | (N/mm²)       | (%)              | toughness <sup>b</sup><br>(J) |
|          | 3 ≤ t ≤ 16    |      |                |        |             | 460          |               | 17               |                               |
|          | 16 < t ≤ 40   |      |                |        |             | 440          |               | 17               |                               |
| S460J2W  | 40 < t ≤ 63   | 0.20 | max. 0.030     | 0.030  | 0.52        | 430          | 530 ~ 710     | 16               | ≥ 27J @ -20°C                 |
| 34003200 | 63 < t ≤ 80   | 0.20 | 111ax. 0.050   | 0.030  | 0.52        | 410          |               | 15               | ≥ 2/1 @ -20°C                 |
|          | 80 < t ≤ 100  |      |                |        |             | 400          |               | 15               |                               |
|          | 100 < t ≤ 150 |      |                |        |             | 385          | 490 ~ 660     | 14               |                               |
|          | 3 ≤ t ≤ 16    |      |                |        |             | 460          |               | 17               |                               |
|          | 16 < t ≤ 40   |      | max. 0.030     | 0.030  | 0.52        | 440          |               | 17               | ≥ 40J @ -20°C                 |
| S460K2W  | 40 < t ≤ 63   | 0.20 |                |        |             | 430          | 530 ~ 710     | 16               |                               |
| 346UKZW  | 63 < t ≤ 80   |      |                |        |             | 410          |               | 15               | ≥ 401 @ -20°C                 |
|          | 80 < t ≤ 100  |      |                |        |             | 400          |               | 15               |                               |
|          | 100 < t ≤ 150 |      |                |        |             | 385          | 490 ~ 660     | 14               |                               |
|          | 3 ≤ t ≤ 63    |      |                | Refe   | r to BS EN  | 10025-5 in S | Section A.1.2 |                  |                               |
| S460J4W  | 63 < t ≤ 80   |      |                |        |             | 410          | 530 ~ 710     | 15               |                               |
| 3400,444 | 80 < t ≤ 100  | 0.20 | max. 0.030     | 0.025  | 0.52        | 400          | 550 /10       | 15               | ≥ 27J @ -40°C                 |
|          | 100 < t ≤ 150 |      |                |        |             | 385          | 490 ~ 660     | 14               |                               |
|          | 3 ≤ t ≤ 63    |      |                | Refe   | r to BS EN  | 10025-5 in S | Section A.1.2 |                  |                               |
| S460J5W  | 63 < t ≤ 80   |      |                |        |             | 410          | E20 ~ 710     | 15               |                               |
| 3400J3W  | 80 < t ≤ 100  | 0.20 | max. 0.030     | 0.025  | 0.52        | 400          | 530 ~ 710     | 13               | ≥ 27J @ -50°C                 |
|          | 100 < t ≤ 150 |      |                |        |             | 385          | 490 ~ 660     | 14               |                               |

Note: a. Longitudinal values.

## BS EN 10025-6: 2019 – High Strength Structural Steels in the Quenched and Tempered Condition

| Grade   | Thickness     | Chemic | al compos | ition (%) | Max.<br>CEV | Ys           | Us            | ε <sub>L</sub> | Impact<br>toughness b                                          |
|---------|---------------|--------|-----------|-----------|-------------|--------------|---------------|----------------|----------------------------------------------------------------|
| Grade   | (mm)          | С      | Р         | S         | (%)         | (N/mm²)      | (N/mm²)       | (%)            | (J)                                                            |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in | Section A.1.1 |                |                                                                |
| S460Q   | 100 < t ≤ 200 | 0.20   | 0.025     | 0.015     | 0.50        | 400          | 500 ~ 670     | 17             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C                                   |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in | Section A.1.1 |                |                                                                |
| \$460QL | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.50        | 400          | 500 ~ 670     | 17             | ≥ 50J @ 0°C<br>≥ 40J @ -20°C<br>≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in | Section A.1.1 |                |                                                                |
| S460QL1 | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.50        | 400          | 500 ~ 670     | 17             | ≥ 60J @ 0°C<br>≥ 50J @ -20°C<br>≥ 40J @ -40°C<br>≥ 30J @ -60°C |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in | Section A.1.1 |                |                                                                |
| S500Q   | 100 < t ≤ 200 | 0.20   | 0.025     | 0.015     | 0.70        | 440          | 540 ~ 720     | 17             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C                                   |

b. Minimum values of impact energy KV2 on longitudinal test pieces.

e. For long products the P and S content can be 0.005% higher.

| Crado   | Thickness     | Chemic | al compos | ition (%) | Max.<br>CEV | Ys                   | Us            | ε <sub>L</sub> | Impact<br>toughness <sup>b</sup>                               |
|---------|---------------|--------|-----------|-----------|-------------|----------------------|---------------|----------------|----------------------------------------------------------------|
| Grade   | (mm)          | С      | Р         | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)       | (%)            | (J)                                                            |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in         | Section A.1.1 |                |                                                                |
| S500QL  | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.70        | 440                  | 540 ~ 720     | 17             | ≥ 50J @ 0°C<br>≥ 40J @ -20°C<br>≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S500QL1 | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.70        | 440                  | 540 ~ 720     | 17             | ≥ 60J @ 0°C<br>≥ 50J @ -20°C<br>≥ 40J @ -40°C<br>≥ 30J @ -60°C |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in         | Section A.1.1 |                |                                                                |
| S550Q   | 100 < t ≤ 200 | 0.20   | 0.025     | 0.015     | 0.83        | 490                  | 590 ~ 770     | 16             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C                                   |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in         | Section A.1.1 |                |                                                                |
| S550QL  | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 490                  | 590 ~ 770     | 16             | ≥ 50J @ 0°C<br>≥ 40J @ -20°C<br>≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S550QL1 | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 490                  | 590 ~ 770     | 16             | ≥ 60J @ 0°C<br>≥ 50J @ -20°C<br>≥ 40 @ -40°C<br>≥ 30J @ -60°C  |
|         | 3 ≤ t ≤ 150   |        | I         | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S620Q   | 100 < t ≤ 200 | 0.20   | 0.025     | 0.015     | 0.83        | 560                  | 650 ~ 830     | 15             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C                                   |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S620QL  | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 560                  | 650 ~ 830     | 15             | ≥ 50J @ 0°C<br>≥ 40J @ -20°C<br>≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S620QL1 | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 560                  | 650 ~ 830     | 15             | ≥ 60J @ 0°C<br>≥ 50J @ -20°C<br>≥ 40J @ -40°C<br>≥ 30J @ -60°C |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S690Q   | 100 < t ≤ 200 | 0.20   | 0.025     | 0.015     | 0.83        | 630                  | 710 ~ 900     | 14             | ≥ 40J @ 0°C<br>≥ 30J @ -20°C                                   |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | l 10025-6 in         | Section A.1.1 |                |                                                                |
| S690QL  | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 630                  | 710 ~ 900     | 14             | ≥ 50J @ 0°C<br>≥ 40J @ -20°C<br>≥ 30J @ -40°C                  |
|         | 3 ≤ t ≤ 150   |        |           | Refe      | er to BS EN | I 10025-6 in         | Section A.1.1 |                |                                                                |
| S690QL1 | 100 < t ≤ 200 | 0.20   | 0.020     | 0.010     | 0.83        | 630                  | 710 ~ 900     | 14             | ≥ 60J @ 0°C<br>≥ 50J @ -20°C<br>≥ 40J @ -40°C<br>≥ 30J @ -60°C |

Note: b. Minimum values of impact energy KV2 on longitudinal test pieces.

with dimensional and/or mass tolerances in accordance with:

- BS EN 10058
- BS EN 10059
- BS EN 10060

#### A.1.6 Acceptable British/European structural steel: strips for cold formed open sections

BS EN 10025-2: 2019 - Non-alloy Structural Steel

|        | Thickness   | Chemic | al composit                             | tion (%) | Max.         | Y <sub>s</sub> | U,            | E∟ a | Impact                        |
|--------|-------------|--------|-----------------------------------------|----------|--------------|----------------|---------------|------|-------------------------------|
| Grade  | (mm)        | С      | Р                                       | S        | CEV<br>(%)   | (N/mm²)        | (N/mm²)       | (%)  | toughness <sup>b</sup><br>(J) |
| S235JR | 0.6 ≤ t < 3 | 0.17   | 0.035                                   | 0.035    | 0.35         | 235            | 360 ~ 510     | 26   | ≥ 27J @ 20°C                  |
| 3233JN | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S235J0 | 0.6 ≤ t < 3 | 0.17   | 0.030                                   | 0.030    | 0.35         | 235            | 360 ~ 510     | 26   | ≥ 27J @ 0°C                   |
| 323310 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S235J2 | 0.6 ≤ t < 3 | 0.17   | 0.025                                   | 0.025    | 0.35         | 235            | 360 ~ 510     | 26   | ≥ 27J @ -20°C                 |
| 323312 | 3 ≤ t ≤ 8   |        | Refer to BS EN 10025-2 in Section A.1.1 |          |              |                |               |      |                               |
| S275JR | 0.6 ≤ t < 3 | 0.21   | 0.035                                   | 0.035    | 0.40         | 275            | 410 ~ 580     | 23   | ≥ 27J @ 20°C                  |
| 32/3JN | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S275J0 | 0.6 ≤ t < 3 | 0.18   | 0.030                                   | 0.030    | 0.40         | 275            | 410 ~ 580     | 23   | ≥ 27J @ 0°C                   |
| 32/310 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S275J2 | 0.6 ≤ t < 3 | 0.18   | 0.025                                   | 0.025    | 0.40         | 275            | 410 ~ 580     | 23   | ≥ 27J @ -20°C                 |
| 32/312 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S355JR | 0.6 ≤ t < 3 | 0.24   | 0.035                                   | 0.035    | 0.45         | 355            | 510 ~ 680     | 22   | ≥ 27J @ 20°C                  |
| 222211 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S355J0 | 0.6 ≤ t < 3 | 0.20   | 0.030                                   | 0.030    | 0.45         | 355            | 510 ~ 680     | 22   | ≥ 27J @ 0°C                   |
| 222210 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S355J2 | 0.6 ≤ t < 3 | 0.20   | 0.025                                   | 0.025    | 0.45         | 355            | 510 ~ 680     | 22   | ≥ 27J @ -20°C                 |
| 333312 | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |
| S355K2 | 0.6 ≤ t < 3 | 0.20   | 0.025                                   | 0.025    | 0.45         | 355            | 510 ~ 680     | 22   | ≥ 40J @ -20°C °               |
| 3333NZ | 3 ≤ t ≤ 8   |        |                                         | Re       | efer to BS E | N 10025-2 in S | Section A.1.1 |      |                               |

Note: a. The direction parallel to the rolling direction applies.

b. Minimum values of impact energy KV2 on longitudinal test pieces.

c. This value corresponds with 27 J at - 30 °C (see EN 1993-1-10).

BS EN 10149-2: 2013 - Thermomechanically rolled steels

| Grade    | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Ys                   | Us        | ε <sub>L</sub> | Impact<br>toughness |
|----------|--------------------------|--------|-----------|-----------|-------------|----------------------|-----------|----------------|---------------------|
| Grade    | (mm)                     | С      | Р         | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)            | (J)                 |
| S315MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.020     |             | 315                  | 390 ~ 510 | 20             |                     |
| 2212IVIC | 3 ≤ t ≤ 20               | 0.12   | 0.025     | 0.020     | -           | 313                  | 390 310   | 24             | -                   |
| S355MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.020     |             | 355                  | 430 ~ 550 | 19             |                     |
| 3333IVIC | 3 ≤ t ≤ 20               | 0.12   | 0.023     | 0.020     | 1           | 555                  | 450 550   | 23             | -                   |
| S420MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.015     |             | 420                  | 480 ~ 620 | 16             |                     |
| 3420IVIC | 3 ≤ t ≤ 20               | 0.12   | 0.023     | 0.015     | -           | 420                  | 460 020   | 19             | -                   |
| S460MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.015     | _           | 460                  | 520 ~ 670 | 14             | _                   |
| 3400IVIC | 3 ≤ t ≤ 20               | 0.12   | 0.023     | 0.013     | -           | 400                  | 320 070   | 17             | -                   |
| S500MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.015     | _           | 500                  | 550 ~ 700 | 12             | _                   |
| 3300IVIC | 3 ≤ t ≤ 16               | 0.12   | 0.023     | 0.013     | -           | 300                  | 330 700   | 14             | -                   |
| S550MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.015     | -           | 550                  | 600 ~ 760 | 12             |                     |
| 33301010 | 3 ≤ t ≤ 16               | 0.12   | 0.023     | 0.015     | _           | 550                  | 000 700   | 14             | -                   |
| S600MC   | 1.5 ≤ t < 3              | 0.12   | 0.025     | 0.015     | -           | 600                  | 650 - 820 | 11             |                     |
| JOUGIVIC | 3 ≤ t ≤ 16               | 0.12   | 0.023     | 0.015     | _           | 000                  | 030 - 820 | 13             | -                   |

| Grade   | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Ys      | Us        | $\epsilon_{L}^{\;a}$ | Impact<br>toughness |
|---------|--------------------------|--------|-----------|-----------|-------------|---------|-----------|----------------------|---------------------|
| Grade   | (mm)                     | С      | Р         | S         | (%)         | (N/mm²) | (N/mm²)   | (%)                  | (J)                 |
| CCEONAC | 1.5 ≤ t < 3              | 0.13   | 0.035     | 0.015     |             | 650 d   | 700 000   | 10                   |                     |
| S650MC  | 3 ≤ t ≤ 16               | 0.12   | 0.025     | 0.015     | -           | 650*    | 700 - 880 | 12                   | -                   |
| C700N4C | 1.5 ≤ t < 3              | 0.12   | 0.035     | 0.015     |             | 700 d   | 750 050   | 10                   |                     |
| S700MC  | 3 ≤ t ≤ 16               | 0.12   | 0.025     | 0.015     | -           | 700 -   | 750 – 950 | 12                   | -                   |

Note: a. The values for the tensile test apply to longitudinal test pieces. For thicknesses < 3 mm,  $L_0$  = 80 mm, otherwise  $L_0$  = 5.65  $\sqrt{S_0}$ .

#### BS EN 10149-3: 2013 - Normalized or normalized rolled steels

| Grade   | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Ys                   | Us        | ε <sub>L</sub> a | Impact           |
|---------|--------------------------|--------|-----------|-----------|-------------|----------------------|-----------|------------------|------------------|
| Grade   | (mm)                     | С      | Р         | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)              | toughness<br>(J) |
| S260NC  | 1.5 ≤ t < 3              | 0.16   | 0.025     | 0.020     |             | 260                  | 370 ~ 490 | 24               |                  |
| 3200NC  | 3 ≤ t ≤ 20               | 0.16   | 0.025     | 0.020     | -           | 200                  | 370 490   | 30               | -                |
| S315NC  | 1.5 ≤ t < 3              | 0.16   | 0.025     | 0.020     |             | 315                  | 430 ~ 550 | 22               |                  |
| 3313110 | 3 ≤ t ≤ 20               | 0.16   | 0.023     | 0.020     | -           | 212                  | 450 550   | 27               | -                |
| S355NC  | 1.5 ≤ t < 3              | 0.18   | 0.025     | 0.015     |             | 355                  | 470 ~ 610 | 20               |                  |
| 3333110 | 3 ≤ t ≤ 20               | 0.16   | 0.023     | 0.015     | -           | 555                  | 470 010   | 25               | -                |
| S420NC  | 1.5 ≤ t < 3              | 0.20   | 0.025     | 0.015     |             | 420                  | 530 ~ 670 | 18               |                  |
| 3420NC  | 3 ≤ t ≤ 20               | 0.20   | 0.025     | 0.015     | 1           | 420                  | 330 070   | 23               | -                |

Note: a. The values for the tensile test apply to longitudinal test pieces. For thicknesses < 3 mm,  $L_0$  = 80 mm, otherwise  $L_0$  = 5.65  $\sqrt{S_0}$ .

#### BS EN 10346: 2015 - Continuously hot-dip coated steel flat products

| Grade  | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Υ <sub>s</sub> a | U <sub>s</sub> b | ε <sub>L</sub> c | Impact<br>toughness |
|--------|--------------------------|--------|-----------|-----------|-------------|------------------|------------------|------------------|---------------------|
| Grade  | (mm)                     | С      | Р         | S         | (%)         | (N/mm²)          | (N/mm²)          | (%)              | (J)                 |
| S220GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 220              | > 300            | 20               | -                   |
| S250GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 250              | > 330            | 19               | -                   |
| S280GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 280              | > 360            | 18               | -                   |
| S320GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 320              | > 390            | 17               | -                   |
| S350GD | 0.6 ≤ t ≤ 3.0            | 0.20   | 0.10      | 0.045     | -           | 350              | > 420            | 16               | -                   |
| S390GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 390              | > 460            | 16               | -                   |
| S420GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 420              | > 480            | 15               | -                   |
| S450GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 450              | > 510            | 14               | -                   |
| S550GD | 0.6 ≤ t ≤ 3.0            |        |           |           |             | 550              | > 560            | -                | -                   |

Note: a. Proof strength R<sub>p0.2</sub>. If the yield point is pronounced, the values apply to the upper yield point R<sub>eH</sub>.

b. For all grades except S550GD, a range of 140 MPa can be expected for tensile strength.

c. Decreased minimum elongation values apply for product thickness:

0.50mm < t < 0.70mm (minus 2 units).

#### with dimensional and/or mass tolerances in accordance with:-

- BS EN 10051
- BS EN 10143

d. For thicknesses > 8 mm the minimum yield strength can be 20 MPa lower.

#### A.1.7 Acceptable British/European strips for cold-formed steel profiled sheetings

BS EN 10346: 2015 - Continuously hot-dip coated steel flat products

| Cuada  | Thickness or     | Chemic | al compos | ition (%) | Max.<br>CEV | γ <sub>s</sub> a | U <sub>s</sub> b | ε <sub>L</sub> c | Impact           |
|--------|------------------|--------|-----------|-----------|-------------|------------------|------------------|------------------|------------------|
| Grade  | Diameter<br>(mm) | С      | Р         | S         | (%)         | (N/mm²)          | (N/mm²)          | (%)              | toughness<br>(J) |
| S220GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 220              | > 300            | 20               | -                |
| S250GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 250              | > 330            | 19               | -                |
| S280GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 280              | > 360            | 18               | -                |
| S320GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 320              | > 390            | 17               | -                |
| S350GD | 0.35 ≤ t ≤ 1.5   | 0.20   | 0.10      | 0.045     |             | 350              | > 420            | 16               | -                |
| S390GD | 0.35 ≤ t ≤ 1.5   | 0.20   | 0.10      | 0.045     | -           | 390              | > 460            | 16               | -                |
| S420GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 420              | > 480            | 15               | -                |
| S450GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 450              | > 510            | 14               | -                |
| S550GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 550              | > 560            | -                | -                |
| S550GD | 0.35 ≤ t ≤ 1.5   |        |           |           |             | 550              | > 560            | -                | -                |

Note: a. Proof strength R<sub>p0.2</sub>. If the yield point is pronounced, the values apply to the upper yield point R<sub>eH</sub>.

0.50mm < t < 0.70mm (minus 2 units);

0.35mm < t < 0.50mm (minus 4 units).

with dimensional and/or mass tolerances in accordance with:-

• BS EN 10143

b. For all grades except S550GD, a range of 140 MPa can be expected for tensile strength.

c. Decreased minimum elongation values apply for product thickness:

#### A.1.8 Acceptable British/European stud connectors

Stud shear connectors manufactured to:-

- BS EN ISO 13918
- BS EN ISO 898-1

#### A.1.9 Acceptable British/European non-preloaded bolting assemblies

Bolts manufactured to:-

BS 4190
 BS EN ISO 4016
 BS 7419
 BS EN ISO 4017
 BS EN ISO 4014
 BS EN ISO 4018

Nuts manufactured to:-

BS 4190
 BS EN ISO 4033
 BS EN ISO 4032
 BS EN ISO 4034

Washers manufactured to:-

BS EN ISO 898-3
 BS EN ISO 7093-1
 BS EN ISO 7091
 BS EN ISO 7092
 BS EN ISO 7094

#### A.1.10 Acceptable British/European preloaded bolting assemblies

Bolts, Nuts and Washers manufactured to:-

BS EN 14399-1
BS EN 14399-2
BS EN 14399-7
BS EN 14399-3
BS EN 14399-8
BS EN 14399-4
BS EN 14399-9
BS EN 14399-5
BS EN 14399-10

#### A.1.11 Acceptable British/European welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in **3.3.1.11**, and manufactured to:-

BS EN ISO 14174
BS EN ISO 17632
BS EN ISO 636
BS EN ISO 17633
BS EN ISO 2560
BS EN ISO 17634
BS EN ISO 14171
BS EN ISO 18274
BS EN ISO 14341
BS EN ISO 21952
BS EN ISO 14343
BS EN ISO 24373
BS EN ISO 16834
BS EN ISO 26304

#### A.2 Acceptable American steel materials

#### A.2.1 Acceptable American structural steel: plates

#### ASTM A36 – 2019: Carbon Structural Steel

| Crada             | Thickness or     | Chemic | al compos | ition (%) | Max. | Ys      | Us        | ε <sub>L</sub> a | Impact           |
|-------------------|------------------|--------|-----------|-----------|------|---------|-----------|------------------|------------------|
| Grade             | Diameter<br>(mm) | С      | Р         | S         | (%)  | (N/mm²) | (N/mm²)   | (%)              | toughness<br>(J) |
|                   | 3 ≤t ≤ 20        | 0.250  |           |           |      |         |           |                  |                  |
|                   | 20 < t ≤ 40      | 0.250  |           |           |      |         |           |                  |                  |
| Grade 36<br>[250] | 40 < t ≤ 65      | 0.260  | 0.030     | 0.030     | ^    | 250     | 400 ~ 550 | 20               | ≥ 27J @ 21°C**   |
| [===]             | 65 < t ≤ 100     | 0.270* |           |           |      |         |           |                  |                  |
|                   | 100 < t ≤ 150    | 0.290* |           |           |      |         |           |                  |                  |

Note: <sup>a</sup> The length of test pieces is 200mm.

- ^ To be specified by the purchaser.
- \* Material test should be conducted to verify the Phosphorus content to be smaller than 0.045%.
- \*\* This requirement shall be applied unless specified in the order.

#### ASTM A242–2013(R2018): High-Strength Low-Alloy Structural Steel

| Grade             | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Ys                   | Us      | ε <sub>L</sub> a | Impact           |
|-------------------|--------------------------|--------|-----------|-----------|-------------|----------------------|---------|------------------|------------------|
| Grade             | (mm)                     | С      | Р         | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²) | (%)              | toughness<br>(J) |
|                   | 3≤ t ≤ 20                |        |           |           |             | 345                  | 480     |                  |                  |
| Grade 50<br>[345] | 20 < t ≤ 40              | 0.150  | 0.15      | 0.050     | ۸           | 315                  | 460     | 18               | ≥ 27J @ 21°C**   |
|                   | 40 < t ≤ 100             |        |           |           |             | 290                  | 435     |                  |                  |

Note: <sup>a</sup> The length of test pieces is 200mm.

- ^ To be specified by the purchaser.
- \*\* This requirement shall be applied unless specified in the order.

#### ASTM A572–2021: High-Strength Low-Alloy Columbium-Vanadium Structural Steel

| 0 1               | Thickness or     | Chemic | al compos | ition (%) | Max.       | Y <sub>s</sub>       | Us      | ε <sub>ι</sub> a | Impact<br>toughness<br>(J) |
|-------------------|------------------|--------|-----------|-----------|------------|----------------------|---------|------------------|----------------------------|
| Grade             | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²) | (%)              |                            |
| Grade 42<br>[290] | 3 ≤ t ≤ 150      | 0.210  |           |           |            | 290                  | 415     | 20               |                            |
| Grade 50<br>[345] | 3 ≤ t ≤ 100      | 0.230  |           |           |            | 345                  | 450     | 18               |                            |
| Grade 55<br>[380] | 3 ≤ t ≤ 64       | 0.250  | 0.030     | 0.030     | ^          | 380                  | 485     | 17               | ≥ 27J @ 21°C**             |
| Grade 60<br>[415] | 3 ≤ t ≤ 64       | 0.260  | 0.030     | 0.030     | ^          | 415                  | 520     | 16               | 5 2/J @ 21-C               |
| Grade 65          | 3 ≤ t ≤ 25       | 0.230  |           |           |            | 450                  | 550     | 15               |                            |
| [450]             | 25 ≤ t ≤ 50      | 0.260  |           |           |            | 430                  | 330     | 13               |                            |

Note: <sup>a</sup> The length of test pieces is 200mm.

- ^ To be specified by the purchaser.
- \*\* This requirement shall be applied unless specified in the order.

#### High-Strength Low-Alloy Steel with Atmospheric Corrosion Resistance ASTM A588-2019:

| Crada             | Thickness or<br>Diameter | Chemic | al compos | ition (%) | Max.<br>CEV | Ys      | Us      | € <sub>L</sub> a | Impact           |
|-------------------|--------------------------|--------|-----------|-----------|-------------|---------|---------|------------------|------------------|
| Grade             | (mm)                     | С      | Р         | S         | (%)         | (N/mm²) | (N/mm²) | (%)              | toughness<br>(J) |
|                   | 3 ≤ t ≤ 100              |        |           |           |             | 345     | 485     |                  |                  |
| Grade 50<br>[345] | 100 < t ≤ 125            | 0.190  | 0.030     | 0.030     | ۸           | 315     | 460     | 18               | ≥ 27J @ 21°C**   |
|                   | 125 < t ≤ 150            |        |           |           |             | 290     | 435     |                  |                  |

Note: <sup>a</sup> The length of test pieces is 200mm. ^ To be specified by the purchaser.

## ASTM A709–2021: Structural Steel for Bridges

| Grade                          | Thickness           | Chemica            | l composi | tion (%) | Max.<br>CEV | Y <sub>s</sub> | Us        | εL              | Impact                                                                                     |
|--------------------------------|---------------------|--------------------|-----------|----------|-------------|----------------|-----------|-----------------|--------------------------------------------------------------------------------------------|
| Grade                          | or Diameter<br>(mm) | С                  | Р         | S        | (%)         | (N/mm²)        | (N/mm²)   | (%)             | toughness<br>(J)                                                                           |
|                                | 3 ≤ t ≤ 20          | 0.260 <sup>c</sup> |           |          |             |                |           |                 | T*: 20J @ 21°C<br>T*: 20J @ 4°C                                                            |
| Grade 36                       | 20 < t ≤ 40         | 0.270 °            |           |          |             |                | 400 ~ 550 |                 | T*: 20J @-12°C                                                                             |
| [250]                          | 40 < t ≤ 75         | 0.280 °            | 0.040 °   | 0.050 °  | ^           | 250            |           | 20 a            | F**: 34J @ 21°C                                                                            |
|                                | 75 < t ≤ 100        | 0.280 °            |           |          |             |                | 400       |                 | F**: 34J @ 4°C<br>F**: 34J @-12°C                                                          |
| Grade 50                       | 3 ≤ t ≤ 50          | 0.220              | 0.030     | 0.030    | ٨           | 345            | 450       | 18 ª            | T*: 20J @ 21°C T*: 20J @ 4°C T*: 20J @-12°C F**: 34J @ 21°C F**: 34J @ 4°C F**: 34J @-12°C |
| [345]                          | 50 < t ≤ 100        | 0.230              | 0.030     | 0.030    | ·           |                | 430       | 10 -            | T*: 27J @ 21°C T*: 27J @ 4°C T*: 27J @-12°C F**: 41J @ 21°C F**: 41J @ 4°C F**: 41J @-12°C |
| Grade 50W                      | 3 ≤ t ≤ 50          | 0.19 (A)           | 0.030     | 0.030    | ٨           | 345            | 485       | 18 ª            | T*: 20J @ 21°C T*: 20J @ 4°C T*: 20J @-12°C F**: 34J @ 21°C F**: 34J @ 4°C F**: 34J @-12°C |
| [345W]                         | 50 < t ≤ 100        | 0.20 (B)           | 0.030     | 0.030    |             | 3+3            | 402       | 10-             | T*: 27J @ 21°C T*: 27J @ 4°C T*: 27J @-12°C F**: 41J @ 21°C F**: 41J @ 4°C F**: 41J @-12°C |
| Grade<br>HPS 50W<br>[HPS 345W] | 3 ≤ t ≤ 100         | 0.110              | 0.020     | 0.006    | ^           | 345            | 485       | 18 <sup>a</sup> | T*: 27J @-12°C<br>F**: 41J @-12°C                                                          |

This requirement shall be applied unless specified in the order.

| Grade                          | Thickness or<br>Diameter | Chemic | cal compos | sition (%) | Max.<br>CEV | Ys                   | Us        | ε <sub>L</sub>  | Impact<br>toughness                                                                        |
|--------------------------------|--------------------------|--------|------------|------------|-------------|----------------------|-----------|-----------------|--------------------------------------------------------------------------------------------|
| Grade                          | (mm)                     | С      | Р          | S          | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)             | (J)                                                                                        |
| Grade 50CR<br>[345C]           | 3 ≤ t ≤ 50               | 0.03   | 0.040      | 0.010      | ۸           | 345                  | 485       | 18 <sup>a</sup> | T*: 20J @ 21°C T*: 20J @ 4°C T*: 20J @-12°C F**: 34J @ 21°C F**: 34J @ 4°C F**: 34J @-12°C |
| Grade<br>HPS 70W<br>[HPS 485W] | 3 ≤ t ≤ 100              | 0.110  | 0.020      | 0.006      | ^           | 485                  | 585 ~ 760 | 19 b            | T*: 34J @-23°C<br>F**: 48J @-23°C                                                          |
| Grade                          | 3 ≤ t ≤ 65               |        |            |            |             | 690                  | 760 ~ 895 | 18 b            | T*: 34J @-23°C                                                                             |
| HPS 100W<br>[HPS 690W]         | 65 < t ≤ 100             | 0.080  | 0.015      | 0.006      | ^           | 620                  | 690 ~ 895 | 16 <sup>b</sup> | T*: 48J @-34°C<br>F**: 48J @-23°C                                                          |

Note: <sup>a</sup> The length of test pieces is 200mm.

# ASTM A945–2016(R2021): High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness

|                   | Thickness or     | Chemical composition (%) |       |       | Max. | Ys      | Us                   | £∟ <sup>a</sup> | Impact           |
|-------------------|------------------|--------------------------|-------|-------|------|---------|----------------------|-----------------|------------------|
| Grade             | Diameter<br>(mm) | С                        | Р     | S     | (%)  | (N/mm²) | (N/mm <sup>2</sup> ) | (%)             | toughness<br>(J) |
| Grade 50<br>[345] | 3 ≤ t ≤ 50       | 0.100                    | 0.025 | 0.010 | ^    | 345     | 485 ~ 620            | 21              | >27J @-40°C      |
| Grade 65<br>[450] | 3 ≤ t ≤ 65       | 0.100                    | 0.025 | 0.010 | ^    | 450     | 540 ~ 690            | 18              | >95J @-40°C      |

Note: <sup>a</sup> The length of test pieces is 200mm.

#### ASTM A1066–2022: High-Strength Low-Alloy Structural Steel Plate Produced by Thermo-Mechanical Controlled Process (TMCP)

| Grade             | Thickness or     | Chemic | al compos | ition (%) | Max. | Ys      | Us      | ε <sub>ι</sub> a | Impact           |
|-------------------|------------------|--------|-----------|-----------|------|---------|---------|------------------|------------------|
| Grade             | Diameter<br>(mm) | С      | Р         | S         | (%)  | (N/mm²) | (N/mm²) | (%)              | toughness<br>(J) |
| Grade 50<br>[345] | 3 ≤ t ≤ 150      | 0.140  |           |           | 0.40 | 345     | 450     | 18               |                  |
| Grade 60<br>[415] | 3 ≤ t ≤ 150      |        |           |           | 0.43 | 415     | 520     | 16               |                  |
| Grade 65<br>[450] | 3 ≤ t ≤ 150      | 0.160  | 0.030     | 0.020     | 0.45 | 450     | 550     | 15               | > 48J @-23°C     |
| Grade 70<br>[485] | 3 ≤ t ≤ 75       | 0.160  |           |           | 0.47 | 485     | 585     | 14               |                  |
| Grade 80<br>[550] | 3 ≤ t ≤ 25       |        |           |           | 0.50 | 550     | 620     | 13               |                  |

Note: <sup>a</sup> The length of test pieces is 200mm.

<sup>&</sup>lt;sup>b</sup> The length of test pieces is 50mm.

<sup>&</sup>lt;sup>c</sup> Only for plate with width ≤ 380 mm.

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> T is designated as Non-fracture-critical tension components.

<sup>\*\*</sup> F is designated as Fracture-critical tension components.

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:-

ASTM A6-2021: Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

| Specified<br>thickness<br>(mm) | Permitted Variations Over Specified Thickness for Widths (m) |               |              |               |              |               |              |
|--------------------------------|--------------------------------------------------------------|---------------|--------------|---------------|--------------|---------------|--------------|
|                                | w ≤ 1.2                                                      | 1.2 < w < 1.5 | 1.5 ≤w < 1.8 | 1.8 ≤ w < 2.1 | 2.1 ≤ w <2.4 | 2.4 ≤ w < 2.7 | 2.7 ≤w < 3.0 |
| 5 ≤ t ≤ 20                     | 0.8                                                          | 0.8           | 0.8          | 0.8           | 0.8~0.9      | 0.8~1.0       | 0.8~1.2      |
| 22 ≤ t ≤ 40                    | 0.8~1.5                                                      | 0.9~1.5       | 0.9~1.6      | 0.9~1.6       | 1.0~1.6      | 1.1~1.8       | 1.3~2.0      |
| 45 ≤ t ≤ 60                    | 1.6~2.3                                                      | 1.6~2.3       | 1.7~2.3      | 1.8~2.4       | 1.8~2.4      | 2.0~2.8       | 2.3~3.0      |
| 73 ≤ t ≤ 100                   | 2.5~3.3                                                      | 2.5~3.3       | 2.5~3.3      | 2.6~3.3       | 2.6~3.5      | 3.0~3.8       | 3.3~3.8      |
| 110-≤t≤140                     | 3.5~4.3                                                      | 3.5~4.3       | 3.5~4.3      | 3.5~4.3       | 3.5~4.3      | 3.8~4.3       | 3.8~4.3      |
| 153 ≤ t ≤ 180                  | 4.5~5.4                                                      | 4.5~5.4       | 4.5~5.4      | 4.5~5.4       | 4.5~5.4      | 4.5~5.4       | 4.5~5.4      |
| 203 ≤ t ≤ 300                  | 5.8~7.5                                                      | 5.8~7.5       | 6.0~9.0      | 6.0~9.0       | 6.0~9.0      | 6.0~9.0       | 6.0~9.0      |

### A.2.2 Acceptable American structural steel: sections

#### ASTM A36 – 2019: Carbon Structural Steel

| Consider          | Thickness or     | Chemic | al compos | ition (%) | Max.        | Ys             | U,          | E <sub>L</sub> | Impact           |
|-------------------|------------------|--------|-----------|-----------|-------------|----------------|-------------|----------------|------------------|
| Grade             | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%)  | (N/mm²)        | (N/mm²)     | (%)            | toughness<br>(J) |
| Grade 36<br>[250] | 3 ≤ t ≤ 80       |        |           |           | Refer to AS | STM A36 in Sec | ction A.2.1 |                |                  |

### ASTM A572–2021: High-Strength Low-Alloy Columbium-Vanadium Structural Steel

|                   | Thickness or     | Chemic | al compos                           | ition (%) | Max.        | Y <sub>s</sub>       | Us         | ε <sub>L</sub> | Impact           |  |  |  |  |  |
|-------------------|------------------|--------|-------------------------------------|-----------|-------------|----------------------|------------|----------------|------------------|--|--|--|--|--|
| Grade             | Diameter<br>(mm) | С      | Р                                   | S         | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)    | (%)            | toughness<br>(J) |  |  |  |  |  |
| Grade 42<br>[290] | 3 ≤ t ≤ 80       |        |                                     |           |             |                      |            |                |                  |  |  |  |  |  |
| Grade 50<br>[345] | 3 ≤ t ≤ 80       |        |                                     |           |             |                      |            |                |                  |  |  |  |  |  |
| Grade 55<br>[380] | 3 ≤ t ≤ 64       |        | Refer to ASTM A572 in Section A.2.1 |           |             |                      |            |                |                  |  |  |  |  |  |
| Grade 60<br>[415] | 3 ≤ t ≤ 64       |        |                                     |           | KEJET LU AS | I IVI A372 III SE    | Cuon A.Z.1 |                |                  |  |  |  |  |  |
| Grade 65          | 3 ≤ t ≤ 25       |        |                                     |           |             |                      |            |                |                  |  |  |  |  |  |
| [450]             | 25 ≤ t ≤ 50      |        |                                     |           |             |                      |            |                |                  |  |  |  |  |  |

#### ASTM A588–2019: High-Strength Low-Alloy Steel with Atmospheric Corrosion Resistance

| Grade             | Thickness or<br>Diameter<br>(mm) | Chemic | al compos | sition (%) | Max.        | Ys            | U,          |     | Impact           |
|-------------------|----------------------------------|--------|-----------|------------|-------------|---------------|-------------|-----|------------------|
|                   |                                  | С      | Р         | S          | CEV<br>(%)  | (N/mm²)       | (N/mm²)     | (%) | toughness<br>(J) |
| Grade 50<br>[345] | 3 ≤ t ≤ 80                       |        |           |            | Refer to AS | TM A588 in Se | ction A.2.1 |     |                  |

# ASTM A913/913M–2019: High-Strength Low-Alloy Steel Shapes Produced by Quenching and Self-Tempering Process (QST)

|                   | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys                   | Us      | ε <sub>L</sub> a | Impact           |
|-------------------|------------------|--------|-----------|-----------|------------|----------------------|---------|------------------|------------------|
|                   | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²) | (%)              | toughness<br>(J) |
| Grade 50<br>[345] | 3 ≤ t ≤ 50       |        |           |           | 0.38       | 345                  | 450     | 18               |                  |
| Grade 60<br>[415] | 3 ≤ t ≤ 80       | 0.120  |           |           | 0.40       | 415                  | 520     | 16               |                  |
| Grade 65<br>[450] | 3 ≤ t ≤ 80       | 0.120  | 0.030     | 0.030     | 0.43       | 450                  | 550     | 15               | >54J @21°C       |
| Grade 70<br>[485] | 3 ≤ t ≤ 80       |        |           |           | 0.45       | 485                  | 620     | 14               |                  |
| Grade 80<br>[550] | 3 ≤ t ≤ 80       | 0.160  |           |           | 0.49       | 550                  | 655     | 13               |                  |

Note:  $^{\rm a}$  The length of test pieces is 200mm.

#### Structural Steel for Bridges ASTM A709-2021:

|                     | Thickness or     | Chemic | al compos | ition (%)     | Max.        | Ys         | Us      | Ել              | Impact                                    |
|---------------------|------------------|--------|-----------|---------------|-------------|------------|---------|-----------------|-------------------------------------------|
| Grade               | Diameter<br>(mm) | С      | Р         | S             | CEV<br>(%)  | (N/mm²)    | (N/mm²) | (%)             | toughness *<br>(J)                        |
| 36 [250]            | 3≤t≤75           |        | Rej       | fer to ASTM / | 4709 in Sec | tion A.2.1 |         | 20 a            | Refer to ASTM<br>A709 in Section<br>A.2.1 |
| 50 [345]            | 3 ≤ t ≤ 80       |        | Rej       | fer to ASTM / | 4709 in Sec | tion A.2.1 |         | 18 <sup>a</sup> | Refer to ASTM<br>A709 in Section<br>A.2.1 |
| QST 50<br>[QST 345] | 3 ≤ t ≤ 50       |        |           |               |             |            |         |                 | T*: 20J<br>@ 21°C, 4°C, -12°C<br>F**: 34J |
|                     |                  | 0.12   | 0.030     | 0.030         | 0.38        | 345        | 450     | 18 a            | @ 21°C, 4°C, -12°C<br>T*: 27J             |
| [43, 3,3]           | 50 < t ≤ 80      |        |           |               |             |            |         |                 | @ 21°C, 4°C, -12°C<br>F**: 41J            |
|                     |                  |        |           |               |             |            |         |                 | @ 21°C, 4°C, -12°C<br>T*: 20J             |
|                     | 3 ≤ t ≤ 50       |        |           |               |             |            |         |                 | @ 21°C, 4°C, -12°C<br>F**: 34J            |
| 50S<br>[345S]       |                  | 0.230  | 0.035     | 0.045         | ٨           | 345~450    | 450     | 18 <sup>a</sup> | @ 21°C, 4°C, -12°C<br>T*: 27J             |
|                     | 50 < t ≤ 80      |        |           |               |             |            |         |                 | @ 21°C, 4°C, -12°C                        |
|                     |                  |        |           |               |             |            |         |                 | F**: 41J<br>@ 21°C, 4°C, -12°C            |
| QST 50S             |                  |        |           |               |             |            |         |                 | T*: 20J<br>@ 21°C, 4°C, -12°C             |
| [QST 345S]          | 3 ≤ t ≤ 80       | 0.12   | 0.030     | 0.030         | 0.47 b      | 345~450    | 450     | 18 <sup>a</sup> | F**: 34J<br>@ 21°C, 4°C, -12°C            |
|                     |                  |        |           |               |             |            |         |                 | T*: 20J<br>@ 21°C, 4°C, -12°C             |
| 50W<br>[345W]       | 3 ≤ t ≤ 10       | 0.19   | 0.030     | 0.030         | ^           | 345        | 485     | 18 ª            | F**: 34J<br>@ 21°C, 4°C, -12°C            |
| HPS 50W<br>[HPS     | 3 ≤ t ≤ 80       | 0.11   | 0.020     | 0.006         | ٨           | 345        | 485     | 18 ª            | T*: 27J @ -12℃                            |
| 345W]               |                  |        |           |               |             |            |         |                 | F**: 41J @ -12°C<br>T*: 27J               |
|                     | 3 ≤ t ≤ 50       |        |           |               |             |            |         |                 | @ 21°C, 4°C, -12°C                        |
| QST 65              |                  | 0.40   | 0.000     | 0.000         |             | 450        | 550     |                 | F**: 41J<br>@ 21°C, 4°C, -12°C            |
| [QST 450]           | 50 < t ≤ 80      | 0.12   | 0.030     | 0.030         | 0.43        | 450        | 550     | 15 <sup>a</sup> | T*: 34J<br>@ 21°C, 4°C, -12°C             |
|                     | 30 < 1 2 00      |        |           |               |             |            |         |                 | F**: 48J<br>@ 21°C, 4°C, -12°C            |
|                     | 3≤t≤50           |        |           |               |             |            |         |                 | T*: 27J<br>@ 21°C, 4°C, -12°C             |
| QST 70              |                  | 0.12   | 0.020     | 0.030         | 0.45        | 405        | 620     | 14 ª            | F**: 41J<br>@ 21°C, 4°C, -12°C            |
| [QST 485]           | 50 < t ≤ 80      |        | 0.030 0.0 | 0.030         | 0.45        | 485        |         | 14 -            | T*: 34J<br>@ 21°C, 4°C, -12°C             |
|                     |                  |        |           |               |             |            |         |                 | F**: 48J<br>@ 21°C, 4°C, -12°C            |

Note:  $\,^{a}$  The length of test pieces is 200mm.  $\,^{b}$  The value is only for shapes with flange thickness over 50 mm, and 0.45 % in other shapes.

<sup>^</sup> To be specified by the purchaser.

T is designated as Non-fracture-critical tension components.

<sup>\*\*</sup> F is designated as Fracture-critical tension components.

#### ASTM A992/A992M-2020: Structural Steel Shapes

| Grade             | Thickness or     | Chemical | compositi | on (%) | Max.<br>CEV<br>(%) | Ys      | Us      | ειa | Impact           |
|-------------------|------------------|----------|-----------|--------|--------------------|---------|---------|-----|------------------|
|                   | Diameter<br>(mm) | С        | Р         | S      |                    | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| Grade 50<br>[345] |                  |          |           |        |                    | 345     |         |     |                  |
| Grade 60<br>[415] | 3 ≤ t ≤ 80       | 0.230    | 0.035     | 0.045  | 0.47 b             | 415     | 450     | 18  | ≥ 27J @ 21°C**   |
| Grade 65<br>[450] |                  |          |           |        |                    | 450     |         |     |                  |

Note: <sup>a</sup> The length of test pieces is 200mm.

with dimensional and/or mass tolerances in accordance with: -

ASTM A6-2021: Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

|               |                            |      | Permitted Variation | ns in thickness (mm) |         |
|---------------|----------------------------|------|---------------------|----------------------|---------|
| Product shape | Section normal size,<br>mm | A Do | epth                | B Flang              | e Width |
|               |                            | over | under               | over                 | under   |
| W and HP      | ≤310                       | 4    | 3                   | 6                    | 5       |
| W allu np     | >310                       | 4    | 3                   | 6                    | 5       |
|               | 75~180                     | 2    | 2                   | 3                    | 3       |
| S and M       | 180~360                    | 3    | 2                   | 4                    | 4       |
|               | 360~610                    | 5    | 3                   | 5                    | 5       |
|               | ≤40                        | 1    | 1                   | 1                    | 1       |
|               | 40~75                      | 2    | 2                   | 2                    | 2       |
| C and MC      | 75~180                     | 3    | 2                   | 3                    | 3       |
|               | 180~360                    | 3    | 3                   | 3                    | 4       |
|               | >360                       | 5    | 4                   | 3                    | 5       |

b The value is only for shapes with flange thickness over 50 mm, and 0.45 % in other shapes.

<sup>\*\*</sup> This requirement shall be applied unless specified in the order.

### A.2.3 Acceptable American structural steel: hollow sections

ASTM A501–2021: Hot-Formed Welded and Seamless Carbon Steel Structural Tubing

|         | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys      | Us      | εL  | Impact           |
|---------|------------------|--------|-----------|-----------|------------|---------|---------|-----|------------------|
| Grade   | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
|         | 3 ≤ t ≤ 25       |        |           |           |            | 270     |         |     |                  |
| Grade A | 25 < t ≤ 50      | 0.360  | 0.035     | 0.035     | ^          | 260     | 400     | 25  |                  |
| [250]   | 50 < t ≤ 76      | 0.260  | 0.035     | 0.035     | ,          | 250     | 400     | 25  |                  |
|         | 76 < t ≤ 100     |        |           |           |            | 240     |         |     |                  |
|         | 3 ≤ t ≤ 25       | 0.220  | 0.030     | 0.020     | ^          | 315     |         | 24  | >27J @-19℃       |
| Grade B | 25 < t ≤ 50      |        |           |           |            | 310     | 448     |     |                  |
| [345]   | 50 < t ≤ 76      | 0.220  | 0.030     | 0.020     |            | 290     | 440     | 24  |                  |
|         | 76 < t ≤ 100     |        |           |           |            | 280     |         |     |                  |
|         | 3 ≤ t ≤ 25       |        |           |           |            | 345     |         |     |                  |
| Grade C | 25 < t ≤ 50      | 0.220  | 0.020     | 0.020     | ^          | 340     | 100     | 22  |                  |
|         | 50 < t ≤ 76      |        | 0.030     | 0.020     | ^          | 330     | 483     | 23  |                  |
|         | 76 < t ≤ 100     |        |           |           |            | 315     |         |     |                  |

<sup>^</sup> To be specified by the purchaser.

### API 5L–2018: Specification for Line Pipe

|                     | Thickness or     | Chemical  | compositi | on (%) | Max. | Ys                   | Us      | E <sub>L</sub> | Impact           |
|---------------------|------------------|-----------|-----------|--------|------|----------------------|---------|----------------|------------------|
| Grade               | Diameter<br>(mm) | С         | Р         | S      | (%)  | (N/mm <sup>2</sup> ) | (N/mm²) | (%)            | toughness<br>(J) |
| Grade B<br>[L245]   |                  |           |           |        |      | 245                  | 415     |                |                  |
| Grade X42<br>[L290] |                  |           |           |        |      | 290                  | 415     |                |                  |
| Grade X46<br>[L320] |                  |           |           |        |      | 320                  | 435     |                |                  |
| Grade X52<br>[L360] | 4.5 ≤ t ≤ 80     | 0.28(S*)  | 0.030     | 0.030  | ^    | 360                  | 460     | ^^             | >27J @ 0°C       |
| Grade X56<br>[L390] | 4.5 ≤ t ≤ 80     | 0.26(W**) | 0.030     | 0.030  | ^    | 390                  | 490     | <i></i>        | >2/J @ 0°C       |
| Grade X60<br>[L415] |                  |           |           |        |      | 415                  | 520     |                |                  |
| Grade X65<br>[L450] |                  |           |           |        |      | 450                  | 535     |                |                  |
| Grade X70<br>[L485] |                  |           |           |        |      | 485                  | 570     |                |                  |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> S is designated as Seamless pipe.

<sup>\*\*</sup> W is designated as Welded pipe.

<sup>^^</sup> The specified minimum elongation, Ar, shall be as determined using the specified equation in API 5L Table 6 – Requitements for the Results of Tensile Tests for PSL 1 Pipe.

### A.2.4 Acceptable American structural steel: sheet piles

ASTM A328-2013(R2018): Steel Sheet Piling

| Grade    | Thickness or<br>Diameter<br>(mm) | Chemic | al compos | ition (%) | Max. | Y <sub>s</sub><br>(N/mm²) | U <sub>s</sub><br>(N/mm²) | ε <sub>L</sub> <sup>a</sup><br>(%) | Impact           |
|----------|----------------------------------|--------|-----------|-----------|------|---------------------------|---------------------------|------------------------------------|------------------|
|          |                                  | С      | Р         | S         | CEV  |                           |                           |                                    | toughness<br>(J) |
| Grade 39 | ۸                                | ۸      | 0.035     | 0.04      | ۸    | 270                       | 450                       | 20                                 | >27J @21°C       |

Note: <sup>a</sup> The length of test pieces is 200mm.

^ To be specified by the purchaser.

### ASTM A857-2019: Steel Sheet Piling, Cold Formed, Light Gage

|          |                  |      | al compos | ition (%) | Max.       | Ys                   | Us                   | اع<br>دل | Impact           |
|----------|------------------|------|-----------|-----------|------------|----------------------|----------------------|----------|------------------|
|          | Diameter<br>(mm) | С    | Р         | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)      | toughness<br>(J) |
| Grade 30 | t ≤ 6.4          |      |           |           |            | 205                  | 340                  | 23       |                  |
| Grade 33 | t ≤ 6.4          | 0.25 | 0.035     | 0.04      | ^          | 230                  | 360                  | 22       | ≥ 27J @ 21°C**   |
| Grade 36 | t ≤ 6.4          |      |           |           |            | 250                  | 365                  | 21       |                  |

Note: b The length of test pieces is 50mm.

^ To be specified by the purchaser.

\*\* This requirement shall be applied unless specified in the order.

with dimensional and/or mass tolerances in accordance with:-

ASTM A6

or any acceptable steel for cold forming (see A.2.6)

# A.2.5 Acceptable American structural steel: solid bars

ASTM A709-2021: Structural steel for bridges

| Curalla                         | Thickness or     | Chemic | al compos                           | ition (%) | Max.       | Ys      | Us      | ε <sub>L</sub> | Impact           |  |  |  |  |  |
|---------------------------------|------------------|--------|-------------------------------------|-----------|------------|---------|---------|----------------|------------------|--|--|--|--|--|
| Grade                           | Diameter<br>(mm) | С      | Р                                   | S         | CEV<br>(%) | (N/mm²) | (N/mm²) | (%)            | toughness<br>(J) |  |  |  |  |  |
| Grade 36<br>[250]               | 3 ≤ t ≤ 100      |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |
| Grade 50<br>[345]               | 3 ≤ t ≤ 100      |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |
| Grade 50W<br>[345W]             | 3 ≤ t ≤ 100      |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |
| Grade<br>HPS 50W<br>[HPS 345W]  | 3 ≤ t ≤ 100      |        | Refer to ASTM A709 in Section A.2.1 |           |            |         |         |                |                  |  |  |  |  |  |
| Grade 50CR<br>[345C]            | 3 ≤ t ≤ 50       |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |
| Grade<br>HPS 70W<br>[HPS 485W]  | 3 ≤ t ≤ 100      |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |
| Grade<br>HPS 100W<br>[HPS 690W] | 3 ≤ t ≤ 100      |        |                                     |           |            |         |         |                |                  |  |  |  |  |  |

with dimensional and/or mass tolerances in accordance with:-  $\ensuremath{\mathsf{ASTM}}$  A6

#### A.2.6 Acceptable American structural steel: strips for cold formed open sections

ASTM A1011–2018: Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

|                                | Thickness or     | Chemic         | al compos      | ition (%) | Max.       | Ys                   | Us      | ε <sub>ι</sub> * | Impact           |
|--------------------------------|------------------|----------------|----------------|-----------|------------|----------------------|---------|------------------|------------------|
| Grade                          | Diameter<br>(mm) | С              | Р              | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²) | (%)              | toughness<br>(J) |
| SS Grade<br>30 [205]           |                  | 0.25           | 0.035          | 0.04      |            | 205                  | 340     | 19               |                  |
| SS Grade<br>33 [230]           |                  | 0.25           | 0.035          | 0.04      |            | 230                  | 360     | 18               |                  |
| SS Grade<br>36 [250]<br>Type 1 |                  | 0.25           | 0.035          | 0.04      |            | 250                  | 365     | 17               |                  |
| SS Grade<br>36 [250]<br>Type 2 |                  | 0.25           | 0.035          | 0.04      |            | 250                  | 400-550 | 16               |                  |
| SS Grade<br>40 [275]           |                  | 0.25           | 0.035          | 0.04      |            | 275                  | 380     | 16               |                  |
| SS Grade<br>45 [310]<br>Type 1 | 0.6 ≤ t ≤ 6.0    | 0.25           | 0.035          | 0.04      | ^          | 310                  | 410     | 14               | ۸                |
| SS Grade<br>45 [310]<br>Type 2 |                  | 0.02 -<br>0.08 | 0.03 –<br>0.07 | 0.025     |            | 310 - 410            | 410     | 15               |                  |
| SS Grade<br>50 [340]           |                  | 0.25           | 0.035          | 0.04      |            | 340                  | 450     | 12               |                  |
| SS Grade<br>55 [380]           |                  | 0.25           | 0.035          | 0.04      |            | 380                  | 480     | 10               |                  |
| SS Grade<br>60 [410]           |                  | 0.25           | 0.035          | 0.04      |            | 410                  | 520     | 9                |                  |
| SS Grade<br>70 [480]           |                  | 0.25           | 0.035          | 0.04      |            | 480                  | 585     | 8                |                  |

<sup>^</sup> To be specified by the purchaser.

ASTM A1008–2021: Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable

|                                | Thickness or     | Chemic | al compos | ition (%) | Max.       | Y <sub>s</sub> | Us      | εL  | Impact           |  |
|--------------------------------|------------------|--------|-----------|-----------|------------|----------------|---------|-----|------------------|--|
| Grade                          | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm²)        | (N/mm²) | (%) | toughness<br>(J) |  |
| SS Grade<br>25 [170]           |                  | 0.20   | 0.035     | 0.035     |            | 170            | 290     | 26  |                  |  |
| SS Grade<br>30 [205]           |                  | 0.20   | 0.035     | 0.035     |            | 205            | 310     | 24  |                  |  |
| SS Grade<br>33 [230]<br>Type 1 | 0.6 ≤ t ≤ 8.0    | 0.20   | 0.035     | 0.035     | ۸          | 230            | 330     | 22  | ^                |  |
| SS Grade<br>33 [230]<br>Type 2 |                  | 0.15   | 0.20      | 0.035     |            | 230            | 330     | 22  |                  |  |
| SS Grade<br>40 [275]<br>Type 1 |                  | 0.20   | 0.035     | 0.035     |            | 275            | 360     | 20  |                  |  |

<sup>\*</sup> Elongation in 200mm specimen.

| Consider                       | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys      | Us      | ε <sub>L</sub> | Impact           |  |
|--------------------------------|------------------|--------|-----------|-----------|------------|---------|---------|----------------|------------------|--|
| Grade                          | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm²) | (N/mm²) | (%)            | toughness<br>(J) |  |
| SS Grade<br>40 [275]<br>Type 2 |                  | 0.15   | 0.20      | 0.035     |            | 275     | 360     | 20             |                  |  |
| SS Grade<br>45 [310]           |                  | 0.20   | 0.070     | 0.025     |            | 310     | 410     | 20             |                  |  |
| SS Grade<br>50 [340]           | 0.6 ≤ t ≤ 8.0    | 0.20   | 0.035     | 0.035     | ^          | 340     | 450     | 18             | ٨                |  |
| SS Grade<br>60 [410]           | 0.02,20.0        | 0.20   | 0.035     | 0.035     |            | 410     | 520     | 12             |                  |  |
| SS Grade<br>70 [480]           |                  | 0.20   | 0.035     | 0.035     |            | 480     | 585     | 6              |                  |  |
| SS Grade<br>80 [550]           |                  | 0.20   | 0.035     | 0.035     |            | 550     | 565     | ۸              |                  |  |

<sup>^</sup> To be specified by the purchaser.

# ASTM A792–2021: Steel Sheet, 55 % Aluminum-Zinc Alloy-Coated by the Hot-Dip Process

|                                 | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys      | Us      | εL  | Impact           |
|---------------------------------|------------------|--------|-----------|-----------|------------|---------|---------|-----|------------------|
| Grade                           | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| SS Grade<br>33 [230]            |                  | 0.20   | 0.04      | 0.04      |            | 230     | 310     | 20  |                  |
| SS Grade<br>37 [255]            |                  | 0.20   | 0.10      | 0.04      |            | 255     | 360     | 18  |                  |
| SS Grade<br>40 [275]            |                  | 0.25   | 0.10      | 0.04      |            | 275     | 380     | 16  |                  |
| SS Grade<br>50 [340]<br>Class 1 |                  |        |           |           |            |         | 450     |     |                  |
| SS Grade<br>50 [340]<br>Class 2 |                  | 0.25   | 0.20      | 0.04      |            | 340     | ۸       | 12  |                  |
| SS Grade<br>50 [340]<br>Class 4 | 0.6 ≤ t ≤ 8.0    |        |           |           | ۸          |         | 410     |     | ٨                |
| SS Grade<br>60 [410]            |                  | 0.25   | 0.20      | 0.04      |            | 410     | 480     | 10  |                  |
| SS Grade<br>70 [480]            |                  | 0.25   | 0.20      | 0.04      |            | 480     | 550     | 9   |                  |
| SS Grade<br>80 [550]<br>Class 1 |                  | 0.20   | 0.04      | 0.04      |            |         |         | ^   |                  |
| SS Grade<br>80 [550]<br>Class 2 |                  | 0.02   | 0.05      | 0.02      |            | 550     | 570     | ^   |                  |
| SS Grade<br>80 [550]<br>Class 3 |                  | 0.20   | 0.04      | 0.04      |            |         |         | 3   |                  |

<sup>^</sup> To be specified by the purchaser.

ASTM A875–2021: Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process

|                                 | Thickness or                                            | Chemic | al compos | ition (%) | Max.             | Ys  | Us  | ε <sub>L</sub> | Impact |
|---------------------------------|---------------------------------------------------------|--------|-----------|-----------|------------------|-----|-----|----------------|--------|
| Grade                           | Diameter (mm)   C   P   S   CEV (N/mm²) (N/mm²) (N/mm²) |        | (N/mm²)   | (%)       | toughness<br>(J) |     |     |                |        |
| SS Grade<br>33 [230]            |                                                         | 0.20   | 0.04      |           |                  | 230 | 310 | 20             |        |
| SS Grade<br>37 [255]            |                                                         | 0.20   | 0.10      |           |                  | 255 | 360 | 18             |        |
| SS Grade<br>50 [340]<br>Class 1 |                                                         | 0.25   | 0.20      |           |                  | 340 | 450 | 12             |        |
| SS Grade<br>50 [340]<br>Class 2 | 0.6 ≤ t ≤ 8.0                                           | 0.25   | 0.20      | 0.04      | ^                | 340 | ۸   | 12             | ^      |
| SS Grade<br>50 [340]<br>Class 3 |                                                         | 0.25   | 0.04      |           |                  | 340 | 480 | 12             |        |
| SS Grade<br>80 [550]            |                                                         | 0.20   | 0.04      |           |                  | 550 | 570 | ۸              |        |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:-

- ASTM A924
- ASTM A568

# A.2.7 Acceptable American strips for cold-formed steel profiled sheetings

ASTM A653-2020: Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

|                                 | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys      | Us      | εL  | Impact           |
|---------------------------------|------------------|--------|-----------|-----------|------------|---------|---------|-----|------------------|
| Grade                           | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| SS Grade<br>33 [230]            |                  | 0.20   | 0.10      | 0.04      |            | 230     | 310     | 20  |                  |
| SS Grade<br>37 [255]            |                  | 0.20   | 0.10      | 0.04      |            | 255     | 360     | 18  |                  |
| SS Grade<br>40 [275]            |                  | 0.25   | 0.10      | 0.04      |            | 275     | 380     | 16  |                  |
| SS Grade<br>50 [340]<br>Class 1 |                  |        | 0.20      |           |            |         | 450     |     |                  |
| SS Grade<br>50 [340]<br>Class 2 |                  | 0.25   | 0.20      | 0.04      |            | 340     | ۸       | 12  |                  |
| SS Grade<br>50 [340]<br>Class 3 |                  | 0.23   | 0.04      | 0.04      |            | 340     | 480     | 12  |                  |
| SS Grade<br>50 [340]<br>Class 4 | 0.35 ≤ t ≤ 1.5   |        | 0.20      |           | ۸          |         | 410     |     | ۸                |
| SS Grade<br>55 [380]            |                  | 0.25   | 0.04      | 0.04      |            | 380     | 480     | 11  |                  |
| SS Grade<br>60 [410]            |                  | 0.25   | 0.04      | 0.04      |            | 410     | 480     | 10  |                  |
| SS Grade<br>70 [480]            |                  | 0.25   | 0.04      | 0.04      |            | 480     | 550     | 9   |                  |
| SS Grade<br>80 [550]<br>Class 1 |                  | 0.20   | 0.04      | 0.04      |            |         |         | ^   |                  |
| SS Grade<br>80 [550]<br>Class 2 |                  | 0.02   | 0.05      | 0.02      |            | 550     | 570     | ^   |                  |
| SS Grade<br>80 [550]<br>Class 3 |                  | 0.20   | 0.04      | 0.04      |            |         |         | 3   |                  |

<sup>^</sup> To be specified by the purchaser.

ASTM A1046-2019: Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process

| Grade                        | Thickness<br>or Diameter | Chemi | cal compo<br>(%) | sition | Max.<br>CEV | Y <sub>s</sub> (2)   | U <sub>s</sub> | ε <sub>L</sub> * | Impact<br>toughness |
|------------------------------|--------------------------|-------|------------------|--------|-------------|----------------------|----------------|------------------|---------------------|
|                              | (mm)                     | С     | Р                | S      | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)        | (%)              | (J)                 |
| SS Grade 33 [230]            |                          | 0.20  | 0.04             |        |             | 230                  | 310            | 20               |                     |
| SS Grade 37 [255]            |                          | 0.20  | 0.10             |        |             | 255                  | 360            | 18               |                     |
| SS Grade 40 [275]            |                          | 0.25  | 0.10             |        |             | 275                  | 380            | 16               |                     |
| SS Grade 50 [340]<br>Class 1 |                          |       | 0.20             |        |             |                      | 450            |                  |                     |
| SS Grade 50 [340]<br>Class 2 |                          | 0.25  | 0.20             |        |             | 340                  | ^              | 12               |                     |
| SS Grade 50 [340]<br>Class 3 | 0.35 ≤ t ≤ 1.5           |       | 0.04             | 0.04   | ^           |                      | 480            |                  | ۸                   |
| SS Grade 50 [340]<br>Class 4 |                          |       | 0.20             |        |             |                      | 410            |                  |                     |
| SS Grade 55 [380]            |                          | 0.25  | 0.04             |        |             | 380                  | 480            | 11               |                     |
| SS Grade 60 [410]            |                          | 0.25  | 0.04             |        |             | 410                  | 490            | 10               |                     |
| SS Grade 70 [480]            |                          | 0.25  | 0.04             |        |             | 480                  | 550            | 9                |                     |
| SS Grade 80 [550]            |                          | 0.20  | 0.04             |        |             | 550                  | 570            | ۸                |                     |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with: ASTM A 924  $\,$ 

<sup>\*</sup> Elongation in 50mm specimen.

#### **Acceptable American stud connectors** A.2.8

# ANSI/AWS D1.1-2020: Structural welding code - steel

| Grade  | Thickness or     | Chemic | al compos | ition (%) | Max.       | Y <sub>s</sub>       | U <sub>s</sub> | ε <sub>L</sub> * | Reduction of |
|--------|------------------|--------|-----------|-----------|------------|----------------------|----------------|------------------|--------------|
| Grade  | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²)        | (%)              | area<br>(%)  |
| Type A | ۸                | ۸      | ۸         | ۸         | ۸          | 340                  | 420            | 14               | 50           |
| Туре В | ۸                | ۸      | ۸         | ۸         | ۸          | 350                  | 420            | 15               | 50           |
| Type C | ۸                | ۸      | ۸         | ۸         | ۸          | ۸                    | 552            | ۸                | ۸            |

<sup>^</sup> To be specified by the purchaser.
\* Elongation in 50mm specimen.

# A.2.9 Acceptable American non-preloaded bolting assemblies

ASTM A193-2020: Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications

| Steel type     | Grade                                                                                           | Thickness or<br>Diameter (mm) | Y <sub>s</sub> * (N/mm²) | U <sub>s</sub><br>(N/mm²) | ε <sub>ι</sub> **<br>(%) | Reduction of<br>Area<br>Min (%) |
|----------------|-------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------|--------------------------|---------------------------------|
|                | B5                                                                                              | D ≤ 100                       | 550                      | 690                       | 16                       | 50                              |
|                | В6                                                                                              | D ≤ 100                       | 585                      | 760                       | 15                       | 50                              |
|                | B6X                                                                                             | D ≤ 100                       | 485                      | 620                       | 16                       | 50                              |
|                |                                                                                                 | D ≤ 64                        | 720                      | 860                       | 16                       | 50                              |
|                | В7                                                                                              | 64 < D ≤ 100                  | 655                      | 795                       | 16                       | 50                              |
| Ferritic steel |                                                                                                 | 100 < D ≤ 180                 | 515                      | 690                       | 18                       | 50                              |
|                | 0.714                                                                                           | D ≤ 100                       | 550                      | 690                       | 18                       | 50                              |
|                | B7M                                                                                             | 100 < D ≤ 180                 | 515                      | 690                       | 18                       | 50                              |
|                |                                                                                                 | D ≤ 64                        | 725                      | 860                       | 18                       | 50                              |
|                | B16                                                                                             | 64 < D ≤ 100                  | 655                      | 760                       | 17                       | 45                              |
|                |                                                                                                 | 100 < D ≤ 200                 | 585                      | 690                       | 16                       | 45                              |
|                | B8, B8M, B8P, B8LN,<br>B8MLN and B8CLN<br>(Class 1 and 1D)                                      | ۸                             | 205                      | 515                       | 30                       | 50                              |
|                | B8C and B8T<br>(Class 1)                                                                        | ^                             | 205                      | 515                       | 30                       | 50                              |
|                | B8A, B8MLCuNA,<br>B8CLNA, B8MA, B8PA,<br>B8TA, B8MLNA,<br>B8NA, B8MNA and<br>B8CA<br>(Class 1A) | ٨                             | 205                      | 515                       | 30                       | 50                              |
|                | B8N, N8MN,<br>B8MLCuN<br>(Class 1B and 1D)                                                      | ۸                             | 240                      | 550                       | 30                       | 40                              |
|                | B8R<br>(Class 1C and 1D)                                                                        | ^                             | 380                      | 690                       | 35                       | 55                              |
|                | B8RA<br>(Class 1C)                                                                              | ^                             | 380                      | 690                       | 35                       | 55                              |
| Austenitic     | B8S<br>(Class 1C and 1D)                                                                        | ^                             | 345                      | 655                       | 35                       | 55                              |
| steel          | B8SA<br>(Class 1C)                                                                              | ^                             | 345                      | 655                       | 35                       | 55                              |
|                |                                                                                                 | D ≤ 20                        | 690                      | 860                       | 12                       | 35                              |
|                | B8, B8C, B8P, B8T and<br>B8N                                                                    | 20 < D ≤ 24                   | 550                      | 795                       | 15                       | 35                              |
|                | (Class 2)                                                                                       | 24 < D ≤ 30                   | 450                      | 725                       | 20                       | 35                              |
|                |                                                                                                 | 30 < D ≤ 36                   | 345                      | 690                       | 28                       | 45                              |
|                |                                                                                                 | D ≤ 20                        | 655                      | 760                       | 15                       | 45                              |
|                | B8M, B8MN and                                                                                   | 20 < D ≤ 24                   | 550                      | 690                       | 20                       | 45                              |
|                | B8MLCuN<br>(Class 2)                                                                            | 24 < D ≤ 30                   | 450                      | 655                       | 25                       | 45                              |
|                |                                                                                                 | 30 < D ≤ 36                   | 345                      | 620                       | 30                       | 45                              |
|                |                                                                                                 | D ≤ 48                        | 515                      | 655                       | 25                       | 40                              |
|                | B8 and B8M2<br>(Class 2B)                                                                       | 48 < D ≤ 64                   | 450                      | 620                       | 30                       | 40                              |
|                | (3.33 25)                                                                                       | 64 < D ≤ 72                   | 380                      | 550                       | 30                       | 40                              |
|                | B8M3                                                                                            | D ≤ 48                        | 450                      | 585                       | 30                       | 60                              |
|                | (Class 2C)                                                                                      | 48 < D                        | 415                      | 585                       | 30                       | 60                              |

<sup>^</sup> To be specified by the purchaser.

<sup>\* 0.2%</sup> offset from elastic strain

### ASTM A307-2021: Carbon Steel Bolts, Studs and Threaded Rod 60000 PSI Tensile Strength

| Grade   | Thickness or     | Chemic | al compos | ition (%) | Max.       | Ys                   | Us        | εL  | Impact           |
|---------|------------------|--------|-----------|-----------|------------|----------------------|-----------|-----|------------------|
| Grade   | Diameter<br>(mm) | С      | Р         | S         | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²)   | (%) | toughness<br>(J) |
| Grade A | ۸                | 0.30   | 0.040     | 0.050     | 0.55       | ^                    | 414       | 18  | ٨                |
| Grade B | ^                | 0.30   | 0.040     | 0.050     | 0.55       | ^                    | 414 - 690 | 18  | ,                |

<sup>^</sup> To be specified by the purchaser.

# ASTM F3125-2021: Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength

| Grade       | Type                                 | Chemical con | nposition ( | %)   | Diameter    | Y <sub>s</sub> | U <sub>s</sub> | εլ(%) | Reduction of Area |
|-------------|--------------------------------------|--------------|-------------|------|-------------|----------------|----------------|-------|-------------------|
|             | ,                                    | С            | Р           | S    | range(mm)   | (N/mm²)        | (N/mm2)        | -,    | Min (%)           |
| A325,A325M, | .325,A325M, Type 1 0.30 ~ 0.52 0.035 |              | 0.035       | 0.04 |             | 660            | 830            | 1.4   | 35                |
| F1852       | Type 3                               | 0.33 ~ 0.40  | 0.035       | 0.04 | M12 ~ M36   | 660            | 830            | 14    | 33                |
| A490,A490M, | Type 1                               | 0.30 ~ 0.48* | 0.035       | 0.04 | IVIIZ IVISO | 940            | 1040           | 14    | 40                |
| F2280       | Type 3                               | 0.30 ~ 0.53  | 0.035       | 0.04 |             | 540            | 1040           | 14    | 40                |

<sup>\*</sup> Carbon requirement is 0.35 - 0.53 for 25.4 mm - 12.7 mm. and M36 diameter bolts

# ASTM A449-2014(R2020): Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120 / 105 / 90 ksi Minimum Tensile Strength, General Use

| Grade                  | Material or          | Chemica     | l composition   | n (%) | Diameter      | Y <sub>s</sub> | Us                   | εL  | Reduction of Area |
|------------------------|----------------------|-------------|-----------------|-------|---------------|----------------|----------------------|-----|-------------------|
| Grade                  | Class                | С           | Р               | S     | range<br>(mm) | (N/mm²)        | (N/mm <sup>2</sup> ) | (%) | Min (%)           |
| Tuno 1                 | Carbon Steel         |             | 0.048           | 0.058 |               |                |                      |     |                   |
| Type 1<br>(Medium      | Boron Steel          | 0.28 ~ 0.55 | 0.048           | 0.058 | 6.4 ~ 24.4    | 635            | 830                  |     |                   |
| carbon<br>alloy steel) | Alloy Steel          | 0.28 0.55   | 0.040           | 0.045 |               |                |                      |     |                   |
| alloy steel)           | Alloy Boron<br>Steel |             | 0.040           | 0.045 |               |                |                      |     |                   |
|                        | Α                    | 0.31 ~ 0.42 | 0.040           |       | 24.4 ~ 38.1   | 560            | 725                  | 14  | 35                |
|                        | В                    | 0.36 ~ 0.50 | 0.06 ~<br>0.125 |       |               |                |                      | 14  | 33                |
| Type 3                 | С                    | 0.14 ~ 0.25 | 0.040           | 0.045 |               |                |                      |     |                   |
| (Weathering steel)     | D                    | 0.14 ~ 0.25 | 0.040           | 0.045 | 38.1 ~ 76.2   | 400            | 620                  |     |                   |
|                        | E                    | 0.18 ~ 0.27 | 0.040           |       | 36.1 76.2     | 400            | 020                  |     |                   |
|                        | F                    | 0.19 ~ 0.25 | 0.040           |       |               |                |                      |     |                   |

### ASTM A563 REV A:2021: Carbon and Alloy Steel Nuts

|       | -1.1                         | Chemical      | composition | (%)     | # (2.1 2)                             | ε <sub>L</sub> |
|-------|------------------------------|---------------|-------------|---------|---------------------------------------|----------------|
| Grade | Thickness or Diameter (mm)   | С             | Р           | S       | $\sigma_{p}^{*}$ (N/mm <sup>2</sup> ) | (%)            |
| А     | 6.35 ~ 101.6                 | 0.55          | 0.12        | 0.15    | 552 ~ 689***<br>414 ~ 517****         |                |
| В     | 6.35 ~ 25.4<br>28.575 ~ 38.1 | 0.55          | 0.12        | 0.15    | 648 ~ 827***<br>483 ~ 689***          |                |
| С     | 6.35 ~ 101.6                 | 0.55          | 0.12        | 0.15    | 896 ~ 993                             |                |
| D     | 6.35 ~ 101.6                 | 0.55          | 0.04        | 0.05    | 930 ~ 1034                            |                |
| DH    | 6.35 ~ 101.6                 | 0.20 ~ 0.55   | 0.04        | 0.05    | 1034 ~ 1207                           |                |
| 85    | 12 ~ 36                      | 0.55          | 0.12        | 0.15    | 1075***<br>^***                       | ^              |
| 105   | 12 ~ 36                      | 0.20 ~ 0.55   | 0.04        | 0.05    | 1245***<br>1165****                   |                |
| C3    | 6.35 ~ 101.6                 | 0.33 ~ 0.40** | 0.035**     | 0.040** | 993                                   |                |
| DH3   | 6.35 ~ 101.6                 | 0.20 ~ 0.53   | 0.035       | 0.040   | 1034 ~ 1207***<br>1034****            |                |
| 853   | 12 ~ 36                      | 0.33 ~ 0.40** | 0.035**     | 0.040** | 1075***<br>^***                       |                |
| 10S3  | 12 ~ 36                      | 0.20 ~ 0.53   | 0.035       | 0.040   | 1245***<br>1165                       |                |

<sup>^</sup> To be specified by the purchaser.

ASTM A194 2022: Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both

| Crada | Thickness or  | Chemica     | l composition | ı (%)    | V * (N1/mm2)             | ٤٦  |
|-------|---------------|-------------|---------------|----------|--------------------------|-----|
| Grade | Diameter (mm) | С           | Р             | S        | Y <sub>s</sub> * (N/mm²) | (%) |
| 1     |               | 0.15 min    | 0.040         | 0.050    | 825 ~ 895                |     |
| 2     |               | 0.40 min    | 0.040         | 0.050    | 930 ~ 1035               |     |
| 2HM   |               | 0.40 min    | 0.040         | 0.050    | 930 ~ 1035               |     |
| 3     |               | 0.10 min    | 0.040         | 0.030    | 1035 ~ 1205              |     |
| 6     | 12 ~ 36       | 0.08 ~ 0.15 | 0.040         | 0.030    | 930 ~ 1035               | ۸   |
| 6F    |               | 0.15        | 0.060         | 0.15 min | 930 ~ 1035               |     |
| 7     |               | 0.38 ~ 0.48 | 0.035         | 0.040    | 1035 ~ 1205              |     |
| 7M    |               | 0.38 - 0.48 | 0.035         | 0.040    | 930 - 1035               |     |
| 16    |               | 0.36 - 0.47 | 0.035         | 0.040    | 1035 - 1205              |     |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> Proof load stress performed in accordance with requirements of codified test methods: ASTM F606.

<sup>\*\*</sup> Use composition A values.

<sup>\*\*\*</sup> Is Non-Zinc-Coated Nuts.

<sup>\*\*\*\*</sup> Is Zinc-Coated Nuts.

<sup>\*</sup> Proof load stress performed in accordance with requirements of codified test methods: ASTM F606.

# ASTM F436M–2019 Standard Specification for Hardened Steel Washers [Metric]

| Cuada               | Thickness or  | Chen | nical compositi | Us   | Տլ      |     |
|---------------------|---------------|------|-----------------|------|---------|-----|
| Grade               | Diameter (mm) | С    | Р               | S    | (N/mm²) | (%) |
| Type 1 (circular) * | 3.1≤t≤8.7     | ۸    | 0.04            | 0.05 | ^       |     |
| Type 3 (circular)   | 3.1≤t≤8.7     | ۸    | 0.04            | 0.05 | ^       |     |
| Type 1 (beveled)    | 7.5≤t≤8.5     | ۸    | 0.04            | 0.05 | ^       |     |
| Type 3 (beveled)    | 7.5≤t≤8.5     | ۸    | 0.04            | 0.05 | ^       |     |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> Type 1 carbon steel.

\*\* Type 3 weathering steel.

#### A.2.10 Acceptable American preloaded bolting assemblies

ASTM F3125-2021: Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength

|  | Grade                | Type | Chemical con                         | position ( | %) | Diameter  | Y <sub>s</sub> | U <sub>s</sub> | εլ(%) | Reduction of Area |  |  |
|--|----------------------|------|--------------------------------------|------------|----|-----------|----------------|----------------|-------|-------------------|--|--|
|  |                      | ,,   | С                                    | Р          | S  | range(mm) | (N/mm²)        | (N/mm2)        |       | Min (%)           |  |  |
|  | A325,A325M,<br>F1852 |      | Refer to ASTM F3125 in Section A.2.9 |            |    |           |                |                |       |                   |  |  |
|  | A490,A490M,<br>F2280 |      |                                      |            |    |           |                |                |       |                   |  |  |

# ASTM A354-2011(E2017) (E2018): Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners

| Material or<br>Class | Diameter      | Chemical c  | ompositio | omposition (%) |       | Ys                   | Us                   | ٤٦  | Reduction          |
|----------------------|---------------|-------------|-----------|----------------|-------|----------------------|----------------------|-----|--------------------|
|                      | range<br>(mm) | С           | Р         | S              | Grade | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | of Area<br>Min (%) |
| Alloy Steel          | D < 38.1      | 0.28 ~ 0.55 | 0.040     | 0.045          | BC    | 750                  | 860                  | 16  | 50                 |
| Alloy Steel          | 38.1 ≤ D      | 0.33 ~ 0.55 | 0.040     | 0.045          | ВС    | 685                  | 795                  | 16  | 45                 |
| Alloy Boron          | D < 38.1      | 0.28 ~ 0.50 | 0.045     | 0.045          | BD    | 900                  | 1035                 | 14  | 40                 |
| Steel                | 38.1 ≤ D      | 0.35 ~ 0.55 | 0.045     | 0.045          | ΒU    | 300                  | 1033                 | 14  | 40                 |

### ASTM A563 REV A:2021: Carbon and Alloy Steel Nuts

|       | Thickness or Diameter        | Che | mical composition | า (%)               |                           | εL  |  |  |  |
|-------|------------------------------|-----|-------------------|---------------------|---------------------------|-----|--|--|--|
| Grade | (mm)                         | С   | Р                 | S                   | $\sigma_{ m p}^*$ (N/mm²) | (%) |  |  |  |
| Α     | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| В     | 6.35 ~ 25.4<br>28.575 ~ 38.1 |     |                   |                     |                           |     |  |  |  |
| С     | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| D     | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| DH    | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| 8S    | 12 ~ 36                      |     | Refer to A.       | STM A563 in Section | A.2.9                     |     |  |  |  |
| 105   | 12 ~ 36                      |     |                   |                     |                           |     |  |  |  |
| С3    | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| DH3   | 6.35 ~ 101.6                 |     |                   |                     |                           |     |  |  |  |
| 8S3   | 12~36                        |     |                   |                     |                           |     |  |  |  |
| 10S3  | 12~36                        |     |                   |                     |                           |     |  |  |  |

### ASTM F436M-2019 Standard Specification for Hardened Steel Washers [Metric]

| Grade             | Thickness or  | Thickness or Chemical composition (%) |                 |                 |         |     |  |  |  |  |  |  |
|-------------------|---------------|---------------------------------------|-----------------|-----------------|---------|-----|--|--|--|--|--|--|
| Grade             | Diameter (mm) | С                                     | Р               | S               | (N/mm²) | (%) |  |  |  |  |  |  |
| Type 1 (circular) |               |                                       |                 |                 |         |     |  |  |  |  |  |  |
| Type 3 (circular) |               | Defeat                                | - ACTNA FARCNA: | - Castian A 2 O |         |     |  |  |  |  |  |  |
| Type 1 (beveled)  |               | Refer to ASTM F436M in Section A.2.9  |                 |                 |         |     |  |  |  |  |  |  |
| Type 3 (beveled)  |               |                                       |                 |                 |         |     |  |  |  |  |  |  |

# A.2.11 Acceptable American welding consumables

AWS A5.1-2012: Carbon Steel Electrodes for Shielded Metal Arc-Welding

| Grade  | Thickness | Chem | ical composi | ition (%) | Y <sub>s</sub> | Us      | εL  | Impact toughness |  |    |               |
|--------|-----------|------|--------------|-----------|----------------|---------|-----|------------------|--|----|---------------|
| Graue  | (mm)      | С    | Р            | S         | (N/mm²)        | (N/mm²) | (%) | (J)              |  |    |               |
| E4310  | 3 ~ 12    | 0.20 | ۸            | ۸         |                |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4311  | 3 ~ 12    | 0.20 | ۸            | ۸         |                |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4312  | 3~12      | 0.20 | ۸            | ۸         |                |         | 17  | ۸                |  |    |               |
| E4313  | 3~12      | 0.20 | ۸            | ۸         | 330            |         | 17  | ۸                |  |    |               |
| E4318  | 3~12      | 0.03 | 0.025        | 0.015     |                | 430     | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4319  | 3~12      | 0.20 | ۸            | ۸         |                |         | 22  | ≥ 27J @ -20°C    |  |    |               |
| E4320  | 6~12      | 0.20 | ۸            | ۸         |                |         | 22  | ۸                |  |    |               |
| E4322  | 6~12      | ^    | ۸            | ۸         | ^              |         | ۸   | ۸                |  |    |               |
| E4327  | 6~12      | 0.20 | ۸            | ۸         | 330            |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4914  | 3~12      | 0.15 | 0.035        | 0.035     |                |         | 17  | ۸                |  |    |               |
| E4915  | 3~12      | 0.15 | 0.035        | 0.035     | 400            |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4916  | 3~12      | 0.15 | 0.035        | 0.035     | 400            |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4918  | 3~12      | 0.15 | 0.035        | 0.035     |                |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4918M | 3~12      | 0.12 | 0.030        | 0.020     | 370 - 500      | 490     | 24  | ≥ 67J @ -30°C    |  |    |               |
| E4924  | 6 ~ 12    | 0.15 | 0.035        | 0.035     |                |         | 17  | ۸                |  |    |               |
| E4927  | 6~12      | 0.15 | 0.035        | 0.035     | 400            |         | 22  | ≥ 27J @ -30°C    |  |    |               |
| E4928  | 6~12      | 0.15 | 0.035        | 0.035     | 400            |         | 400 | 400              |  | 22 | ≥ 27J @ -20°C |
| E4948  | 6~10      | 0.15 | 0.035        | 0.035     |                |         | 22  | ≥ 27J @ -30°C    |  |    |               |

<sup>^</sup> To be specified by the purchaser.

#### **A.3 Acceptable Japanese steel materials**

#### A.3.1 Acceptable Japanese structural steel: plates

JIS G 3106-2020: Rolled steels for welded structure

| Grade              | Thickness**   | Chemical o           | composit | ion (%) | Max.<br>CEV***        | Y <sub>s</sub> | Us              | εL    | Impact<br>toughness       |       |       |       |           |       |         |       |  |     |           |    |              |
|--------------------|---------------|----------------------|----------|---------|-----------------------|----------------|-----------------|-------|---------------------------|-------|-------|-------|-----------|-------|---------|-------|--|-----|-----------|----|--------------|
| Grade              | (mm)          | C (Class)            | Р        | S       | (%)                   | (N/mm²)        | (N/mm²)         | (%)   | (J)                       |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | t≤5           | t ≤ 50:              |          |         |                       | 245            |                 | 23    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 5 < t ≤ 16    | 0.23 (A)<br>0.20 (B) |          |         | t ≤ 50:               | 245            |                 | 18    | SM400B                    |       |       |       |           |       |         |       |  |     |           |    |              |
| SM400A             | 16 < t ≤ 40   | 0.18 (C)             | 0.025    | 0.035   | 0.38                  | 235            | 400 ~ 510       | 22    | ≥ 27J @ 0°C               |       |       |       |           |       |         |       |  |     |           |    |              |
| SM400B<br>SM400C   | 40 < t ≤ 75   | t > 50:              | 0.035    | 0.035   | 50 < t ≤ 100:         | 215            | 400 ~ 510       | 24    | SM400C                    |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 75 < t ≤ 100  | 0.25 (A)<br>0.22 (B) |          |         | 0.40                  | 215            |                 | 24    | ≥ 47J @ 0°C               |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 100 < t ≤ 150 | 0.22 (B)<br>0.18 (C) |          |         |                       | 205*           |                 | 24    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | t≤5           | t ≤ 50:<br>0.20 (A)  |          |         |                       | 325            |                 | 22    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 5 < t ≤ 16    | 0.20 (A)<br>0.18 (B) |          |         | t ≤ 50:               | 325            |                 | 17    | For SM490B                |       |       |       |           |       |         |       |  |     |           |    |              |
| SM490A             | 16 < t ≤ 40   | 0.18 (C)             | 0.025    | 0.035   | 0.38                  | 315            | 400 ~ 610       | 21    | $\geq$ 27J @ 0°C          |       |       |       |           |       |         |       |  |     |           |    |              |
| SM490B<br>SM490C   | 40 < t ≤ 75   | t > 50:              | 0.035    | 0.035   | 50 < t ≤ 100:         | 295            | 490 ~ 610       | 23    | For SM490C                |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 75 < t ≤ 100  | 0.22 (A)             |          |         | 0.40                  | 295            |                 | 23    | ≥ 47J @ 0°C               |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 100 < t ≤ 150 | 0.20 (B)<br>0.18 (C) |          |         |                       | 285*           |                 | 23    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | t≤5           |                      |          | 0.035   | 0.035                 |                | 365             |       | 19                        |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 5 < t ≤ 16    |                      |          |         |                       | 0.035          | t ≤ 50:<br>0.38 | 365   |                           | 15    | For   |       |           |       |         |       |  |     |           |    |              |
| SM490YA<br>SM490YB | 16 < t ≤ 40   | 0.20                 | 0.035    |         |                       |                | 0.035           | 0.035 | 0.035                     | 0.035 |       | 355   | 490 ~ 610 | 19    | SM490YB |       |  |     |           |    |              |
|                    | 40 < t ≤ 75   |                      |          |         | 50 < t ≤ 100:<br>0.40 | 335            |                 | 21    | ≥ 27J @ 0°C               |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 75 < t ≤ 100  |                      |          |         |                       | 325            |                 | 21    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | t≤5           |                      |          |         |                       | 365            |                 | 19    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 5 < t ≤ 16    |                      |          |         | t < 50:<br>0.40       | 365            |                 | 15    | For SM520B<br>≥ 27J @ 0°C |       |       |       |           |       |         |       |  |     |           |    |              |
| SM520B<br>SM520C   | 16 < t ≤ 40   | 0.20                 | 0.035    | 0.035   |                       | 355            | 520 ~ 640       | 19    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
| 5.11.5200          | 40 < t ≤ 75   |                      |          |         | 50 < t ≤ 100:<br>0.42 | 335            |                 | 21    | For SM520C<br>≥ 47J @ 0°C |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 75 < t ≤ 100  |                      |          |         | 02                    | 325            |                 | 21    | _ 177 @ 0 0               |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | t≤16          |                      |          |         |                       | 460            |                 | 19    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 16 < t ≤ 20   |                      |          |         | t ≤ 50:<br>0.44       | 460            |                 | 26    | 1                         |       |       |       |           |       |         |       |  |     |           |    |              |
| SM570              | 20 < t ≤ 40   | 0.18                 | 0.035    | 0.035   | 0.035                 | 0.035          | 0.035           | 0.035 | 0.035                     | 0.035 | 0.035 | 0.035 | 0.035     | 0.035 | 0.035   | 0.035 |  | 450 | 570 ~ 720 | 20 | ≥ 47J @ -5°C |
|                    | 40 < t ≤ 75   |                      |          |         | 50 < t ≤ 100:<br>0.47 | 430            |                 | 20    |                           |       |       |       |           |       |         |       |  |     |           |    |              |
|                    | 75 < t ≤ 100  |                      |          |         | ****                  | 420            |                 | 20    |                           |       |       |       |           |       |         |       |  |     |           |    |              |

<sup>\*</sup> Not applicable to Class C. To be specified by the purchaser.

<sup>\*\*\*</sup> General requirement for CEV according to JIS G 3106:

| Thickness of steel product mm | 50 mm max. | Over 50 mm up to and include 100 mm | Over 100 mm                                          |
|-------------------------------|------------|-------------------------------------|------------------------------------------------------|
| Carbon equivalent %           | 0.44 max.  | 0.47 max.                           | As agreed between the purchaser and the manufacturer |

<sup>\*\*</sup> Applicable thickness for steel plates:

t ≤ 450 mm: SM400A.

t ≤ 300 mm: SM490A.

 $t \le 250$  mm: SM400B, SM400C, SM490B and SM490C.

 $t \le 150$  mm: SM490YA, SM490YB, SM520B, SM520C and SM570.

JIS G 3114-2016: Hot-rolled atmospheric corrosion resisting steels for welded structure

| Grade                | Thickness**   | Chemica | l composit | ion (%) | Max.                  | Ys          | Us        | ε <sub>L</sub> | Impact                  |       |       |       |                         |  |     |           |    |              |  |
|----------------------|---------------|---------|------------|---------|-----------------------|-------------|-----------|----------------|-------------------------|-------|-------|-------|-------------------------|--|-----|-----------|----|--------------|--|
| Grade                | (mm)          | С       | Р          | S       | CEV                   | (N/mm²)     | (N/mm²)   | (%)            | toughness<br>(J)        |       |       |       |                         |  |     |           |    |              |  |
|                      | t ≤ 5         |         |            |         |                       | 245         |           | 22             |                         |       |       |       |                         |  |     |           |    |              |  |
| SMA400AW             | 5 < t ≤ 16    |         |            |         |                       | 245         |           | 17             | SMA400BW                |       |       |       |                         |  |     |           |    |              |  |
| SMA400AP             | 16 < t ≤ 40   |         |            |         | t ≤ 50:<br>0.44       | 235         |           | 27             | SMA400BP<br>≥ 27J @ 0°C |       |       |       |                         |  |     |           |    |              |  |
| SMA400BW<br>SMA400BP | 40 < t ≤ 75   | 0.18    | 0.035      | 0.035   |                       | 215         | 400 ~ 540 | 23             |                         |       |       |       |                         |  |     |           |    |              |  |
| SMA400CW<br>SMA400CP | 75 < t ≤ 100  |         |            |         | 50 < t ≤ 100:<br>0.47 | 215         |           | 23             | SMA400CW<br>SMA400CP    |       |       |       |                         |  |     |           |    |              |  |
|                      | 100 < t ≤ 160 |         |            |         | 0.17                  | 205*        |           | 23             | ≥ 47J @ 0°C             |       |       |       |                         |  |     |           |    |              |  |
|                      | 160 < t ≤ 200 |         |            |         |                       | 195*        |           | 23             |                         |       |       |       |                         |  |     |           |    |              |  |
|                      | t ≤ 5         |         |            | 5 0.035 |                       | 365         |           | 19             | SMA490BW                |       |       |       |                         |  |     |           |    |              |  |
| SMA490AW             | 5 < t ≤ 16    |         |            |         |                       | 365         |           | 15             |                         |       |       |       |                         |  |     |           |    |              |  |
| SMA490AP             | 16 < t ≤ 40   |         |            |         |                       |             |           |                | t ≤ 50:<br>0.44         | 355   |       | 19    | SMA490BP<br>≥ 27J @ 0°C |  |     |           |    |              |  |
| SMA490BW<br>SMA490BP | 40 < t ≤ 75   | 0.18    | 0.035      |         |                       | 335 490 ~ 6 | 490 ~ 610 | 21             | SMA490CW<br>SMA490CP    |       |       |       |                         |  |     |           |    |              |  |
| SMA490CW             | 75 < t ≤ 100  |         |            |         | 50 < t ≤ 100:<br>0.47 | 325         |           | 21             |                         |       |       |       |                         |  |     |           |    |              |  |
| SMA490CP             | 100 < t ≤ 160 |         |            |         |                       | 305*        |           | 21             | ≥ 47J @ 0°C             |       |       |       |                         |  |     |           |    |              |  |
|                      | 160 < t ≤ 200 |         |            |         |                       | 295*        |           | 21             |                         |       |       |       |                         |  |     |           |    |              |  |
|                      | t≤16          |         |            |         |                       | 460         |           | 19             |                         |       |       |       |                         |  |     |           |    |              |  |
|                      | 16 < t ≤ 20   |         |            |         | t ≤ 50:<br>0.44       | 450         |           | 26             |                         |       |       |       |                         |  |     |           |    |              |  |
| SMA570W<br>SMA570P   | 20 < t ≤ 40   | 0.18    | 0.035      | 0.035   | 0.035                 | 0.035       | 0.035     | 0.035          | 0.035                   | 0.035 | 0.035 | 0.035 | 0.035                   |  | 450 | 570 ~ 720 | 20 | ≥ 47J @ -5°C |  |
|                      | 40 < t ≤ 75   |         |            |         |                       |             |           |                |                         |       |       |       |                         |  |     |           |    |              |  |
|                      | 75 < t ≤ 100  |         |            |         | <del>-</del>          | 420         |           | 20             |                         |       |       |       |                         |  |     |           |    |              |  |

<sup>\*</sup> Not applicable to Class C.

# JIS G 3136-2012: Rolled steels for building structure

| Grade   | Thickness**  | Chemical c    | ompositio | n (%) | Max. | Y <sub>s</sub> | Us        | εL  | Impact           |
|---------|--------------|---------------|-----------|-------|------|----------------|-----------|-----|------------------|
| Grade   | (mm)         | С             | Р         | S     | CEV  | (N/mm²)        | (N/mm²)   | (%) | toughness<br>(J) |
|         | 6 ≤ t < 12   |               |           |       |      | 235            |           | 17  |                  |
|         | 12 ≤ t < 16  |               |           |       |      | 235            |           | 17  |                  |
| SN400A  | 16           | 0.24          | 0.050     | 0.050 | ۸    | 235            | 400 ~ 510 | 21  | ٨                |
| 3N400A  | 16 < t ≤ 40  | 0.24          | 0.030     | 0.030 |      | 235            | 400 310   | 23  | ,,               |
|         | 40 < t ≤ 50  |               |           |       |      | 215            |           | 23  |                  |
|         | 50 < t ≤ 100 |               |           |       |      | 215            |           | 23  |                  |
|         | 6 ≤ t < 12   |               |           |       |      | 235            |           | 18  |                  |
|         | 12 ≤ t < 16  | t ≤ 50:       |           |       |      | 235 ~ 355      |           | 18  |                  |
| SN400B  | 16           | 0.20          | 0.030     | 0.015 | 0.36 | 235 ~ 355      | 400 ~ 510 | 22  | ≥ 27J @ 0°C      |
| 3114006 | 16 < t ≤ 40  | 50 < t ≤ 100: | 0.030     | 0.013 | 0.50 | 235 ~ 355      | 400 310   | 22  | ≥ 2/1 @ 0°C      |
|         | 40 < t ≤ 50  | 0.22          |           |       |      | 215 ~ 335      |           | 24  |                  |
|         | 50 < t ≤ 100 |               |           |       |      | 215 ~ 335      |           | 24  |                  |
|         | 16           | t ≤ 50:       |           |       |      | 235 ~ 355      |           | 18  |                  |
| SNAOOC  | 16 < t ≤ 40  | 0.20          | 0.020     | 0.000 | 0.36 | 235 ~ 355      | 400 ~ E10 | 22  | > 271 @ 000      |
| SN400C  | 40 < t ≤ 50  | 50 < t ≤ 100: | 0.020     | 0.008 | 0.30 | 215 ~ 335      | 400 ~ 510 | 24  | <u> </u>         |
|         | 50 < t ≤ 100 | 0.22          |           |       |      | 215 ~ 335      |           | 24  |                  |

| Cuada   | Thickness**  | Chemical c                    | ompositio | on (%) | Max.                 | Y <sub>s</sub> | Us        | εL  | Impact                     |
|---------|--------------|-------------------------------|-----------|--------|----------------------|----------------|-----------|-----|----------------------------|
| Grade   | (mm)         | С                             | Р         | S      | CEV                  | (N/mm²)        | (N/mm²)   | (%) | toughness<br>(J)           |
|         | 6 ≤ t < 12   |                               |           |        |                      | 325            |           | 17  |                            |
|         | 12 ≤ t < 16  | t ≤ 50:                       |           |        | t ≤ 40               | 325 ~ 445      |           | 17  | ≥ 27J @ 0°C<br>≥ 27J @ 0°C |
| CNIAOOD | 16           | 0.18<br>50 < t ≤ 100:<br>0.20 | 0.030     | 0.015  | 0.44                 | 325 ~ 445      | 490 ~ 610 | 21  |                            |
| SN490B  | 16 < t ≤ 40  |                               |           |        | 40 < t ≤ 100<br>0.46 | 325 ~ 445      | 450 010   | 21  |                            |
|         | 40 < t ≤ 50  |                               |           |        |                      | 295 ~ 415      |           | 23  |                            |
|         | 50 < t ≤ 100 |                               |           |        |                      | 295 ~ 415      |           | 23  |                            |
|         | 16           | t ≤ 50:                       |           |        | t ≤ 40               | 325 ~ 445      |           | 21  |                            |
| CNIAOOC | 16 < t ≤ 40  | 0.18                          | 0.020     | 0.000  | 0.44                 | 325 ~ 445      | 400 ~ 610 | 21  |                            |
| SN490C  | 40 < t ≤ 50  | 50 < t ≤ 100:                 | 0.020     | 0.008  | 40 < t ≤ 100         | 295 ~ 415      |           | 23  |                            |
|         | 50 < t ≤ 100 | 0.20                          |           |        | 0.46                 | 295 ~ 415      |           | 23  |                            |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with: JIS G 3193

#### A.3.2 Acceptable Japanese structural steel: sections

JIS G 3106-2020: Rolled steels for welded structure - Refer to Section A.3.1

JIS G 3114-2016: Hot-rolled atmospheric corrosion resisting steels for welded structure -

Refer to Section A.3.1

JIS G 3136-2012: Rolled steels for building structure - Refer to **Section A.3.1** 

with dimensional and/or mass tolerances in accordance with: JIS G 3192

#### A.3.3 Acceptable Japanese structural steel: hollow sections

JIS G 3475–2021: Carbon steel tubes for building structure

| Condo    | Thickness or     | Chemic | al compos | ition (%) | Max. | Y <sub>s</sub> | Us        | ε <sub>L</sub> | Impact           |
|----------|------------------|--------|-----------|-----------|------|----------------|-----------|----------------|------------------|
| Grade    | Diameter<br>(mm) | С      | Р         | S         | (%)  | (N/mm²)        | (N/mm²)   | (%)            | toughness<br>(J) |
| STKN400W | t ≤ 80           | 0.25   | 0.030     | 0.030     | 0.36 | 235            | 400 ~ 540 | 23             | ۸                |
|          | t ≤ 12           |        |           |           |      | 235            |           |                |                  |
| STKN400B | 12 < t ≤ 40      | 0.25   | 0.030     | 0.015     | 0.36 | 235 ~ 385      | 400 ~ 540 | 23             | >27J @ 0°C       |
|          | 40 < t ≤ 80      |        |           |           |      | 215 ~ 365      |           |                |                  |
|          | t ≤ 12           |        |           |           |      | 325            |           |                |                  |
| STKN490B | 12 < t ≤ 40      | 0.22   | 0.030     | 0.015     | 0.44 | 325 ~ 475      | 490 ~ 640 | 23             | >27J @ 0°C       |
|          | 40 < t ≤ 80      |        |           |           |      | 295 ~ 445      |           |                |                  |

<sup>^</sup> To be specified by the purchaser.

#### A.3.4 Acceptable Japanese structural steel: sheet piles

JIS A 5523–2021: Weldable hot-rolled steel sheet piles

| Grade  | Thickness or  | Chem | nical comp<br>(%) | osition | Max. | Ys      | Us      | ε <sub>L</sub> | Impact<br>toughness |
|--------|---------------|------|-------------------|---------|------|---------|---------|----------------|---------------------|
| Grade  | Diameter (mm) | С    | Р                 | CEV (   |      | (N/mm²) | (N/mm²) | (%)            | (J)                 |
| SYW295 | ۸             |      |                   |         | 0.44 | 295     | 450     | 24             |                     |
| SYW390 | ۸             | 0.18 | 0.040             | 0.040   | 0.45 | 390     | 490     | 20             | >43J @ 0°C          |
| SYW430 | ۸             |      |                   |         | 0.46 | 430     | 510     | 19             |                     |

<sup>^</sup> To be specified by the purchaser.

JIS A 5528-2021: Hot rolled steel sheet piles

| Grade | Thickness or  | Chem | ical compo<br>(%) | osition | Max.       | Ys      | Us                   | ε <sub>L</sub> | Impact           |
|-------|---------------|------|-------------------|---------|------------|---------|----------------------|----------------|------------------|
|       | Diameter (mm) | С    | Р                 | S       | CEV<br>(%) | (N/mm²) | (N/mm <sup>2</sup> ) | (%)            | toughness<br>(J) |
| SY295 | ۸             | _    | 0.040             | 0.040   | ^          | 295     | 450                  | 24             | ۸                |
| SY390 | ^             | ,    | 0.040             | 0.040   | ^          | 390     | 490                  | 20             | .,               |

<sup>^</sup> To be specified by the purchaser.

Or any combination of steel grades manufactured to standards listed under:-

- A.1.6
- A.2.6
- A.4.6
- A.5.6

with dimensional and/or mass tolerances in accordance with:

JIS A 5523

JIS A 5528

Or any acceptable steel for cold forming (see A.3.6)

# A.3.5 Acceptable Japanese structural steel: solid bars

JIS G 3106-2020: Rolled steels for welded structure

|                    | Thickness**   | Chemical o                       | composit | ion (%) | Max.              | Ys                | Us        | ε <sub>L</sub> | Impact                                |  |  |  |
|--------------------|---------------|----------------------------------|----------|---------|-------------------|-------------------|-----------|----------------|---------------------------------------|--|--|--|
| Grade              | (mm)          | C (Class)                        | Р        | S       | CEV***<br>(%)     | (N/mm²)           | (N/mm²)   | (%)            | toughness<br>(J)                      |  |  |  |
|                    | t ≤ 5         |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 5 < t ≤ 16    |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 16 < t ≤ 40   |                                  |          |         | Defeate UC C 3    | 100 in Cantinu A  | 2.4       |                |                                       |  |  |  |
| CA 4 4 0 0 A       | 40 < t ≤ 50   |                                  |          |         | Refer to JIS G 3. | 106 in Section A  | .3.1      |                |                                       |  |  |  |
| SM400A<br>SM400B   | 50 < t ≤ 75   |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
| SM400C             | 75 < t ≤ 100  |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 100 < t ≤ 160 | 0.25 (4)                         |          |         |                   | 205*              |           | 24             | SM400B                                |  |  |  |
|                    | 160 < t ≤ 200 | 0.25 (A)<br>0.22 (B)<br>0.18 (C) | 0.035    | 0.035   | ı                 | 195*              | 400 ~ 510 | 24             | ≥ 27J @ 0°C<br>SM400C<br>≥ 47J @ 0°C  |  |  |  |
|                    | t ≤ 5         |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 5 < t ≤ 16    |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 16 < t ≤ 40   |                                  |          |         | Defer to US C 2   |                   |           |                |                                       |  |  |  |
| CN4400A            | 40 < t ≤ 50   |                                  |          |         | Refer to JIS G 3. | 100 III SECTION A | .5.1      |                |                                       |  |  |  |
| SM490A<br>SM490B   | 50 < t ≤ 75   |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
| SM490C             | 75 < t ≤ 100  |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 100 < t ≤ 160 | 0.22 (4)                         |          |         |                   | 285*              |           | 23             | For SM490B<br>≥ 27J @ 0°C             |  |  |  |
|                    | 160 < t ≤ 200 | 0.22 (A)<br>0.20 (B)<br>0.18 (C) | 0.035    | 0035    | -                 | 275*              | 490 ~ 610 | 23             | ≥ 277 @ 0 °C  For SM490C  ≥ 47J @ 0°C |  |  |  |
|                    | t ≤ 5         |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 5 < t ≤ 16    |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
| SM490YA<br>SM490YB | 16 < t ≤ 40   |                                  |          |         | Refer to JIS G 3. | 106 in Section A  | .3.1      |                |                                       |  |  |  |
|                    | 40 < t ≤ 75   |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 75 < t ≤ 100  |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | t ≤ 5         |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 5 < t ≤ 16    |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
| SM520B<br>SM520C   | 16 < t ≤ 40   |                                  |          |         | Refer to JIS G 3. | 106 in Section A  | .3.1      |                |                                       |  |  |  |
|                    | 40 < t ≤ 75   |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | 75 < t ≤ 100  |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
|                    | t ≤ 16        |                                  |          |         |                   |                   |           |                |                                       |  |  |  |
| SM570              | 16 < t ≤ 20   |                                  |          |         | Refer to JIS G 3. | 106 in Section A  | .3.1      |                |                                       |  |  |  |
|                    | 20 < t ≤ 40   |                                  |          |         |                   |                   |           |                |                                       |  |  |  |

<sup>^</sup> To be specified by the purchaser.

\*\*\* General requirement for CEV according to JIS G 3106:

| Thickness of steel product mm | 50 mm max. | Over 50 mm up to and include 100 mm | Over 100 mm                                          |
|-------------------------------|------------|-------------------------------------|------------------------------------------------------|
| Carbon equivalent %           | 0.44 max.  | 0.47 max.                           | As agreed between the purchaser and the manufacturer |

<sup>\*</sup> Not applicable to Class C.

<sup>\*\*</sup> Applicable thickness for steel plates:

t ≤ 450 mm: SM400A.

 $t \le 300 \text{ mm}$ : SM490A.

t ≤ 250 mm: SM400B, SM400C, SM490B and SM490C.

t ≤ 150 mm: SM490YA, SM490YB, SM520B, SM520C and SM570.

JIS G 3114-2016: Hot-rolled atmospheric corrosion resisting steels for welded structure

| Crada                            | Thickness     | Chemica | l composit | ion (%) | Max.                  | Y <sub>s</sub> | Us        | ε <sub>L</sub> | Impact                  |
|----------------------------------|---------------|---------|------------|---------|-----------------------|----------------|-----------|----------------|-------------------------|
| Grade                            | (mm)          | С       | Р          | S       | CEV<br>(%)            | (N/mm²)        | (N/mm²)   | (%)            | toughness<br>(J)        |
|                                  | t ≤ 5         |         |            |         |                       | 245            |           | 22             |                         |
|                                  | 5 < t ≤ 16    |         |            |         |                       | 245            |           | 17             | SMA400BW                |
| SMA400AW                         | 16 < t ≤ 40   |         |            | 0.035   |                       | 235            |           | 27             | SMA400BP<br>≥ 27J @ 0°C |
| SMA400AP<br>SMA400BW<br>SMA400BP | 40 < t ≤ 75   | 0.18    | 0.035      |         |                       | 215            | 400 ~ 540 | 23             |                         |
|                                  | 75 < t ≤ 100  |         |            |         | 50 < t ≤ 100:<br>0.47 | 215            |           | 23             | SMA400CW<br>SMA400CP    |
| <u>-</u>                         | 100 < t ≤ 160 |         |            |         |                       | 205*           |           | 23             | ≥ 47J @ 0°C             |
|                                  | 160 < t ≤ 200 |         |            |         |                       | 195*           |           | 23             |                         |
|                                  | t ≤ 5         |         |            |         |                       | 365            |           | 19             |                         |
|                                  | 5 < t ≤ 16    |         |            |         |                       | 365            |           | 15             | SMA490BW                |
| SMA490AW                         | 16 < t ≤ 40   |         |            |         | t ≤ 50:<br>0.44       | 355            |           | 19             | SMA490BP<br>≥ 27J @ 0°C |
| SMA490AP<br>SMA490BW             | 40 < t ≤ 75   | 0.18    | 0.035      | 0.035   |                       | 335            | 490 ~ 610 | 21             |                         |
| SMA490BP                         | 75 < t ≤ 100  |         |            |         | 50 < t ≤ 100:<br>0.47 | 325            |           | 21             | SMA490CW<br>SMA490CP    |
|                                  | 100 < t ≤ 160 |         |            |         |                       | 305*           |           | 21             | ≥ 47J @ 0°C             |
|                                  | 160 < t ≤ 200 |         |            |         |                       | 295*           |           | 21             |                         |

<sup>\*</sup> Not applicable to Class C.

# JIS G 3136-2012: Rolled steels for building structure

| Grade   | Thickness**  | Chemical c            | ompositio | n (%)       | Max.<br>CEV                   | Ys        | Us        | ε <sub>L</sub> | Impact<br>toughness |
|---------|--------------|-----------------------|-----------|-------------|-------------------------------|-----------|-----------|----------------|---------------------|
| Grade   | (mm)         | С                     | Р         | S           | (%)                           | (N/mm²)   | (N/mm²)   | (%)            | (J)                 |
|         | 6 ≤ t < 12   |                       |           |             |                               | 235       |           | 17             |                     |
|         | 12 ≤ t < 16  |                       |           |             |                               | 235       |           | 17             |                     |
| SN400A  | 16           | 0.24                  | 0.050     | 0.050       | ۸                             | 235       | 400~510   | 21             | ٨                   |
| 3N400A  | 16 < t ≤ 40  | 0.24                  | 0.030     | 0.030       | ^                             | 235       | 400 310   | 23             | ,,                  |
|         | 40 < t ≤ 50  |                       |           |             |                               | 215       |           | 21             |                     |
|         | 50 < t ≤ 100 |                       |           |             |                               | 215       |           | 23             |                     |
|         | 6 ≤ t < 12   |                       |           |             |                               | 235       |           | 18             |                     |
|         | 12 ≤ t < 16  | t ≤ 50:<br>0.20       |           | 0.030 0.015 | 0.36                          | 235 ~ 355 |           | 18             |                     |
| SN400B  | 16           |                       | 0.030     |             |                               | 235 ~ 355 | 400 ~ 510 | 22             | ≥ 27J @ 0°C         |
|         | 16 < t ≤ 40  | 50 < t ≤ 100:         |           |             | 0.30                          | 235 ~ 355 | 400 310   | 22             | ≥ 2/1 @ 0 ℃         |
|         | 40 < t ≤ 50  | 0.22                  |           |             |                               | 215 ~ 335 |           | 24             |                     |
|         | 50 < t ≤ 100 |                       |           |             |                               | 215 ~ 335 |           | 24             |                     |
|         | 16           | t ≤ 50:               |           |             |                               | 235 ~ 355 |           | 18             | · ≥ 27J @ 0°C       |
| SN400C  | 16 < t ≤ 40  | 0.20                  | 0.020     | 0.008       | 0.36                          | 235 ~ 355 | 400 ~ 510 | 22             |                     |
| 3114000 | 40 < t ≤ 50  | 50 < t ≤ 100:         | 0.020     | 0.008       | 0.50                          | 215 ~ 335 | 400 310   | 24             |                     |
|         | 50 < t ≤ 100 | 0.22                  |           |             |                               | 215 ~ 335 |           | 24             |                     |
|         | 6 ≤ t < 12   |                       |           |             |                               | 325       |           | 17             |                     |
|         | 12 ≤ t < 16  | t ≤ 50:               |           |             | t ≤ 40                        | 325 ~ 445 |           | 17             |                     |
| SN490B  | 16           | 0.18                  | 0.020     | 0.015       | 0.44                          | 325 ~ 445 | 400 ~ 610 | 21             | ≥ 27J @ 0°C         |
| 3114908 | 16 < t ≤ 40  | 50 < t ≤ 100:<br>0.20 | 0.030     | 0.015       | 0.015<br>40 < t ≤ 100<br>0.46 | 325 ~ 445 |           | 21             |                     |
|         | 40 < t ≤ 50  |                       |           |             |                               | 295 ~ 415 |           | 23             |                     |
|         | 50 < t ≤ 100 |                       |           |             |                               | 295 ~ 415 |           | 23             |                     |

(To be continued) (Continued)

| Grade  | Thickness**                                                                                                                             | Chemical c | ompositio | n (%) | Max.<br>CEV  | I Ye I Ue I s |                      | ει  | Impact<br>toughness |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-------|--------------|---------------|----------------------|-----|---------------------|--|
| Grade  | (mm)                                                                                                                                    | С          | Р         | S     | (%)          | (N/mm²)       | (N/mm <sup>2</sup> ) | (%) | (J)                 |  |
|        | 16 t≤50:<br>16 <t≤40 0.18<="" td=""><td>t ≤ 50:</td><td></td><td></td><td>t ≤ 40</td><td>325 ~ 445</td><td colspan="3">5 21</td></t≤40> | t ≤ 50:    |           |       | t ≤ 40       | 325 ~ 445     | 5 21                 |     |                     |  |
| CNACCC |                                                                                                                                         | 0.18       | 0.020     | 0.000 | 0.44         | 323 443       | > 271 @ 000          |     |                     |  |
| SN490C | 90C 40 < t ≤ 50 50 < t ≤ 100:                                                                                                           |            | 0.020     | 0.008 | 40 < t ≤ 100 | 295 ~ 415     | 490 ~ 610            | 23  |                     |  |
|        | 50 < t ≤ 100                                                                                                                            | 0.20       |           |       | 0.46         | 295 ~ 415     |                      | 23  |                     |  |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:-JIS G 3191

#### A.3.6 Acceptable Japanese structural steel: strips for cold formed open sections

JIS G 3106-2020: Rolled steels for welded structure - Refer to Section A.3.1

JIS G 3114-2016: Hot-rolled atmospheric corrosion resisting steels for welded structure -

Refer to **Section A.3.1** 

JIS G 3136-2012: Rolled steels for building structure - Refer to **Section A.3.1** 

JIS G 3350-2021: Light gauge steel sections for general structure

| Grade  | Thickness or Diameter | Chem | ical comp<br>(%) | osition | Max. Y <sub>s</sub> |         | Us                   | εL  | Impact           |  |
|--------|-----------------------|------|------------------|---------|---------------------|---------|----------------------|-----|------------------|--|
|        | (mm)                  | C    | Р                | S       | (%)                 | (N/mm²) | (N/mm <sup>2</sup> ) | (%) | toughness<br>(J) |  |
| SSC400 | 1.6 ≤ t ≤ 5.0         | 0.25 | 0.050            | 0.050   | 0.44                | 245     | 400 ~ 540            | 21  | ٨                |  |
| 330400 | 5.0 ≤ t ≤ 6.0         | 0.25 | 0.050            | 0.050   | 0.44                | 245     | 400 540              | 17  | •                |  |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with: JIS G 3193

# A.3.7 Acceptable Japanese strips for cold-formed profiled sheets

JIS G 3302-2019: Hot-dip zinc-coated steel sheet and strip

| Consider | Thickness or Diameter | Chem | ical composi | tion (%) | Ys      | Us      | ε <sub>L</sub> |
|----------|-----------------------|------|--------------|----------|---------|---------|----------------|
| Grade    | (mm)                  | С    | Р            | S        | (N/mm²) | (N/mm²) | (%)            |
| SGHC     | 1.6 ~ 6.0             | 0.15 | 0.050        | 0.050    | ٨       | ^       | ۸              |
| SGH340   | 1.6 ~ 6.0             | 0.25 | 0.200        | 0.050    | 245     | 340     | 20             |
| SGH400   | 1.6 ~ 6.0             | 0.25 | 0.200        | 0.050    | 295     | 400     | 18             |
| SGH440   | 1.6 ~ 6.0             | 0.25 | 0.200        | 0.050    | 335     | 440     | 18             |
| SGH490   | 1.6 ~ 6.0             | 0.30 | 0.200        | 0.050    | 365     | 490     | 16             |
| SGH540   | 1.6 ~ 6.0             | 0.30 | 0.200        | 0.050    | 400     | 540     | 16             |
| SGCD1    | 0.30 ~ 2.3            | 0.12 | 0.040        | 0.040    | ۸       | 270     | 32 ~ 38*       |
| SGCD2    | 0.40 ~ 2.3            | 0.10 | 0.030        | 0.030    | ۸       | 270     | 36 ~ 40*       |
| SGCD3    | 0.60 ~ 2.3            | 0.08 | 0.030        | 0.030    | ۸       | 270     | 40 ~ 42*       |
| SGCD4    | 0.60 ~ 2.3            | 0.06 | 0.030        | 0.030    | ۸       | 270     | 42 ~ 44*       |
| SGCH     | 0.11 ~ 1.0            | 0.18 | 0.080        | 0.050    | ۸       | ۸       | ۸              |
| SGCC     | 0.19 ~ 3.2            | 0.15 | 0.050        | 0.050    | ۸       | ^       | ^              |
| SGC340   | 0.25 ~ 3.2            | 0.25 | 0.200        | 0.050    | 245     | 340     | 20             |
| SGC400   | 0.25 ~ 3.2            | 0.25 | 0.200        | 0.050    | 295     | 400     | 18             |
| SGC440   | 0.25 ~ 3.2            | 0.25 | 0.200        | 0.050    | 335     | 440     | 18             |
| SGC490   | 0.25 ~ 3.2            | 0.30 | 0.200        | 0.050    | 365     | 490     | 16             |
| SGC570   | 0.25 ~ 2.0            | 0.30 | 0.200        | 0.050    | 560     | 570     | ۸              |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> Details refer to the data provided in the document as arranged in the following table

|       | Elongation (%)  |                                                                                                           |                        |    |    |   |  |  |  |  |  |  |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------|------------------------|----|----|---|--|--|--|--|--|--|
| Grade |                 |                                                                                                           | Nominal thickness (mm) |    |    |   |  |  |  |  |  |  |
|       | 0.25 ≤ t < 0.40 | $.25 \le t < 0.40$ $0.40 \le t < 0.60$ $0.60 \le t < 1.0$ $1.0 \le t < 1.6$ $1.6 \le t < 2.5$ $2.5 \le t$ |                        |    |    |   |  |  |  |  |  |  |
| SGCD1 | 32              | 32 34 36 37 38 ^                                                                                          |                        |    |    |   |  |  |  |  |  |  |
| SGCD2 | ^               | 36                                                                                                        | 38                     | 39 | 40 | ^ |  |  |  |  |  |  |
| SGCD3 | ^               | ^ 40 41 42 ^                                                                                              |                        |    |    |   |  |  |  |  |  |  |
| SGCD4 | ^               |                                                                                                           |                        |    |    |   |  |  |  |  |  |  |

<sup>^</sup> Not applicable

Hot-dip zinc-5 % aluminium alloy-coated steel sheet and strip JIS G 3317-2019:

| Condo   | Thickness or Diameter | Chem | ical composi | tion (%) | Y <sub>s</sub> | Us      | ε <sub>L</sub> |
|---------|-----------------------|------|--------------|----------|----------------|---------|----------------|
| Grade   | (mm)                  | С    | Р            | S        | (N/mm²)        | (N/mm²) | (%)            |
| SZAHC   | 1.6 ~ 4.5             | 0.15 | 0.050        | 0.050    | ۸              | ^       | ۸              |
| SZAH340 | 1.6 ~ 4.5             | 0.25 | 0.200        | 0.050    | 245            | 340     | 20             |
| SZAH400 | 1.6 ~ 4.5             | 0.25 | 0.200        | 0.050    | 295            | 400     | 18             |
| SZAH440 | 1.6 ~ 4.5             | 0.25 | 0.200        | 0.050    | 335            | 440     | 18             |
| SZAH490 | 1.6 ~ 4.5             | 0.30 | 0.200        | 0.050    | 365            | 490     | 16             |
| SZAH540 | 1.6 ~ 4.5             | 0.30 | 0.200        | 0.050    | 400            | 540     | 16             |
| SZACD1  | 0.27 ~ 2.3            | 0.12 | 0.040        | 0.040    | ۸              | 270     | 32 ~ 38*       |
| SZACD2  | 0.40 ~ 2.3            | 0.10 | 0.030        | 0.030    | ۸              | 270     | 36 ~ 40*       |
| SZACD3  | 0.60 ~ 2.3            | 0.08 | 0.030        | 0.030    | ۸              | 270     | 40 ~ 42*       |
| SZACD4  | 0.60 ~ 2.3            | 0.06 | 0.030        | 0.030    | ۸              | 270     | 42 ~ 44*       |
| SZACH   | 0.25 ~ 1.0            | 0.18 | 0.080        | 0.050    | ۸              | ^       | ^              |
| SZACC   | 0.25 ~ 2.3            | 0.15 | 0.050        | 0.050    | ۸              | ^       | ^              |
| SZAC340 | 0.25 ~ 2.3            | 0.25 | 0.200        | 0.050    | 245            | 340     | 20             |
| SZAC400 | 0.25 ~ 2.3            | 0.25 | 0.200        | 0.050    | 295            | 400     | 18             |
| SZAC440 | 0.25 ~ 2.3            | 0.25 | 0.200        | 0.050    | 335            | 440     | 18             |
| SZA490  | 0.25 ~ 2.3            | 0.30 | 0.200        | 0.050    | 365            | 490     | 16             |
| SZAC570 | 0.25 ~ 2.0            | 0.30 | 0.200        | 0.050    | 560            | 570     | ۸              |

To be specified by the purchaser.
Details refer to the data provided in the document as arranged in the following table

|        |                        |                 | Elongation (%) |               |               |  |  |  |
|--------|------------------------|-----------------|----------------|---------------|---------------|--|--|--|
| Grade  | Nominal thickness (mm) |                 |                |               |               |  |  |  |
|        | 0.25 ≤ t < 0.40        | 0.40 ≤ t < 0.60 | 0.60 ≤ t < 1.0 | 1.0 ≤ t < 1.6 | 1.6 ≤ t ≤ 2.3 |  |  |  |
| SZACD1 | 32                     | 34              | 36             | 37            | 38            |  |  |  |
| SZACD2 | ۸                      | 36              | 38             | 39            | 40            |  |  |  |
| SZACD3 | ۸                      | ۸               | 40             | 41            | 42            |  |  |  |
| SZACD4 | ۸                      | ۸               | 42             | 43            | 44            |  |  |  |

<sup>^</sup> Not applicable

Hot-dip 55 % aluminium-zinc alloy-coated steel sheet and strip JIS G 3321-2019:

| Condo    | Thickness or Diameter | Chem  | ical composi | tion (%) | Ys      | Us      | $\epsilon_{L}$ |
|----------|-----------------------|-------|--------------|----------|---------|---------|----------------|
| Grade    | (mm)                  | С     | Р            | S        | (N/mm²) | (N/mm²) | (%)            |
| SGLHC    | 1.6 ~ 2.3             | 0.15  | 0.050        | 0.050    | ۸       | ۸       | ۸              |
| SGLHC400 | 1.6 ~ 2.3             | 0.25  | 0.200        | 0.050    | 295     | 400     | 18             |
| SGLHC490 | 1.6 ~ 2.3             | 0.30  | 0.200        | 0.050    | 365     | 490     | 16             |
| SGLCC    | 0.24 ~ 2.3            | 0.15  | 0.050        | 0.050    | ۸       | ^       | ^              |
| SGLCD    | 0.27 ~ 1.6            | 0.10  | 0.030        | 0.030    | ۸       | 270     | 27 ~ 33*       |
| SGLCDD   | 0.40 ~ 1.6            | 0.080 | 0.030        | 0.030    | ۸       | 270     | 29 ~ 35*       |
| SGLC400  | 0.25 ~ 2.3            | 0.25  | 0.200        | 0.050    | 295     | 400     | 16 ~ 18*       |
| SGLC440  | 0.25 ~ 2.3            | 0.25  | 0.200        | 0.050    | 335     | 440     | 14 ~ 18*       |
| SGLC490  | 0.25 ~ 2.3            | 0.30  | 0.200        | 0.050    | 365     | 490     | 12 ~ 16*       |
| SGLC570  | 0.19 ~ 2.0            | 0.30  | 0.200        | 0.050    | 560     | 570     | ۸              |

<sup>^</sup> To be specified by the purchaser.
\* Details refer to the data provided in the document as arranged in the following table

| Elongation (%)               |                 |                 |                |               |               |  |  |  |
|------------------------------|-----------------|-----------------|----------------|---------------|---------------|--|--|--|
| Grade Nominal thickness (mm) |                 |                 |                |               |               |  |  |  |
|                              | 0.25 ≤ t < 0.40 | 0.40 ≤ t < 0.60 | 0.60 ≤ t < 1.0 | 1.0 ≤ t < 1.6 | 1.6 ≤ t ≤ 2.3 |  |  |  |
| SGLCD                        | ^               | 27              | 31             | 32            | 33            |  |  |  |
| SGLCDD                       | ^               | 29              | 32             | 34            | 35            |  |  |  |
| SGLC400                      | 16              | 17              | 18             | 18            | 18            |  |  |  |
| SGLC440                      | 14              | 15              | 16             | 18            | 18            |  |  |  |
| SGLC490                      | 12              | 13              | 14             | 16            | 16            |  |  |  |

<sup>^</sup> Not applicable

#### A.3.8 **Acceptable Japanese stud connectors**

JIS B 1198-2011: Headed Studs

| NA-til                 | Thickness or     | Chemical composition (%) |       |       | Y <sub>s</sub> | Us        | $\epsilon_{L}$ |
|------------------------|------------------|--------------------------|-------|-------|----------------|-----------|----------------|
| Material               | Diameter<br>(mm) | С                        | Р     | S     | (N/mm²)        | (N/mm²)   | (%)            |
| Silicon killed steel   | ۸                | 0.20                     | 0.040 | 0.040 | 235            | 400 ~ 550 | 20             |
| Aluminium killed steel | ۸                | 0.20                     | 0.040 | 0.040 | 235            | 400 ~ 550 | 20             |

<sup>^</sup> To be specified by the purchaser.

#### Acceptable Japanese non-preloaded bolting assemblies A.3.9

Mechanical properties of fasteners made of carbon steel and alloy JIS B 1051-2014: steel- Part 1: Bolts, screws and studs

| Consider | Matarial                                             | Chemica                | l composi | tion (%) | Y <sub>s</sub> * | Us                           | εL  |
|----------|------------------------------------------------------|------------------------|-----------|----------|------------------|------------------------------|-----|
| Grade    | Material or treatment                                | С                      | Р         | S        | (N/mm²)          | (N/mm²)                      | (%) |
| 4.6      |                                                      | 0.55                   | 0.050     | 0.060    | 240              | 400                          | 22  |
| 4.8      |                                                      | 0.55                   | 0.050     | 0.060    | ۸                | 420                          | ^   |
| 5.6      | Carbon steel or carbon steel with additives          | Min: 0.13<br>Max: 0.55 | 0.050     | 0.060    | 300              | 500                          | 20  |
| 5.8      |                                                      | 0.55                   | 0.050     | 0.060    | ۸                | 520                          | ۸   |
| 6.8      |                                                      | Min: 0.15<br>Max: 0.55 | 0.050     | 0.060    | ۸                | 600                          | ^   |
| Carbo    | Carbon steel quenched and tempered                   | Min: 0.25<br>Max: 0.55 | 0.025     | 0.025    |                  |                              |     |
|          | Carbon steel with additives quenched and tempered    | Min: 0.15<br>Max: 0.40 | 0.025     | 0.025    | ۸                | d ≤ 16 : 800<br>d > 16 : 830 | 12  |
|          | Alloy steel quenched and tempered                    | Min: 0.20<br>Max: 0.55 | 0.025     | 0.025    |                  |                              |     |
|          | Carbon steel quenched and tempered                   | Min: 0.25<br>Max: 0.55 | 0.025     | 0.025    | ٨                |                              |     |
| 9.8      | Carbon steel with additives<br>quenched and tempered | Min: 0.15<br>Max: 0.40 | 0.025     | 0.025    |                  | d ≤ 16 : 900                 | 10  |
|          | Alloy steel quenched and tempered                    | Min: 0.20<br>Max: 0.55 | 0.025     | 0.025    |                  |                              |     |
|          | Carbon steel quenched and tempered                   | Min: 0.25<br>Max: 0.55 | 0.025     | 0.025    |                  |                              |     |
| 10.9     | Carbon steel with additives quenched and tempered    | Min: 0.20<br>Max: 0.55 | 0.025     | 0.025    | ۸                | 1040                         | 9   |
|          | Alloy steel quenched and tempered                    | Min: 0.20<br>Max: 0.55 | 0.025     | 0.025    |                  |                              |     |
|          | Alloy steel quenched and tempered                    | Min: 0.30<br>Max: 0.50 | 0.025     | 0.025    |                  |                              | _   |
| 12.9     | Carbon steel with additives quenched and tempered    | Min: 0.28<br>Max: 0.50 | 0.025     | 0.025    | ^                | 1220                         | 8   |

<sup>^</sup> To be specified by the purchaser.
\* Lower yield stress or stress at 0.2% non-proportional elongation.

Mechanical properties of fasteners - Part 2: Nuts with specified proof JIS B 1052-2-2014: load values-Coarse thread

|       | Thickness or  | Chemica | l composition                  | າ (%)                          | \( * \ /\$\ / \ \ 2\ \   | ε <sub>L</sub> |  |
|-------|---------------|---------|--------------------------------|--------------------------------|--------------------------|----------------|--|
| Grade | Diameter (mm) | С       | Р                              | S                              | Y <sub>s</sub> * (N/mm²) | (%)            |  |
| 04    | (Thin nut)    | 0.58    | 0.060                          | 0.150                          | 380                      | ^              |  |
| 05    | (Thin nut)    | 0.58    | 0.048                          | 0.058                          | 500                      | ^              |  |
| 5     | ≤ 39          | 0.58    | 0.060                          | 0.150                          | 580 ~ 630                | ^              |  |
| 6     | ≤ 39          | 0.58    | 0.060                          | 0.150                          | 670 ~ 720                | ^              |  |
| 8     | ≤ 39          | 0.58    | D≤16<br>0.060<br>D>16<br>0.048 | D≤16<br>0.150<br>D>16<br>0.058 | 855 ~ 920                | ۸              |  |
| 9     | ۸             | 0.58    | 0.060                          | 0.150                          | 915 ~ 920                | ^              |  |
| 10    | ≤ 39          | 0.58    | 0.048                          | 0.058                          | 1040 ~ 1060              | ^              |  |
| 12    | ≤ 16          | 0.58    | 0.048                          | 0.058                          | 1150 ~ 1200              | ^              |  |

To be specified by the purchaser. Stress under proof load.

## A.3.10 Acceptable Japanese preloaded bolting assemblies

JIS B 1186-2013: Sets of high strength hexagon bolt, hexagon nut and plain washers for friction grip joints

| Grade | Thickness or<br>Diameter (mm) | Chemi | cal compositio | n (%) | Y <sub>s</sub> | U <sub>s</sub><br>(N/mm²) | ε <sub>ι</sub><br>(%) |
|-------|-------------------------------|-------|----------------|-------|----------------|---------------------------|-----------------------|
|       |                               | С     | Р              | S     | (N/mm²)        |                           |                       |
| F8T   | ≤ 30                          | ۸     | ۸              | ۸     | 640            | 800 ~ 1000                | 16                    |
| F10T  | ≤ 30                          | ۸     | ۸              | ۸     | 900            | 1000 ~ 1200               | 14                    |

<sup>^</sup> To be specified by the purchaser.

# A.3.11 Acceptable Japanese welding consumables

JIS Z 3211-2008: Covered electrodes for mild steel, high tensile strength steel and low temperature service steel

|           | Chem | nical composit | ion (%) | Ys      | Us                   | ει  |  |
|-----------|------|----------------|---------|---------|----------------------|-----|--|
| Grade     | С    | Р              | S       | (N/mm²) | (N/mm <sup>2</sup> ) | (%) |  |
| E4303     |      |                |         | 330     | 430                  | 20  |  |
| E4310     | -    |                |         |         |                      |     |  |
| E4311     | -    |                |         | 330     | 430                  | 20  |  |
| E4312     | 0.20 | ۸              | ٨       |         |                      |     |  |
| E4313     |      |                |         | 330     | 430                  | 16  |  |
| E4316     | -    |                |         | 222     | 420                  | 20  |  |
| E4318     | 0.03 | 0.025          | 0.015   | 330     | 430                  | 20  |  |
| E4319     |      |                |         | 330     | 430                  | 20  |  |
| E4320     | 1    |                |         | 330     | 430                  | 20  |  |
| E4324     | 0.20 | ^              | ۸       | 330     | 430                  | 16  |  |
| E4327     |      |                |         | 330     | 430                  | 20  |  |
| E4340     | ٨    | ٨              | ^       | 330     | 430                  | 20  |  |
| E4903     | 0.15 | ٨              | ^       | 400     | 490                  | 20  |  |
| E4910     | 0.00 |                |         | 400     | 400 650              | 20  |  |
| E4911     | 0.20 | ^              | ۸       | 400     | 480 ~ 650            | 20  |  |
| E4912     | 0.00 | 0.035          | 0.025   |         |                      |     |  |
| E4913     | 0.20 | 0.035          | 0.035   | 400     | 490                  | 16  |  |
| E4914     | 0.15 | 0.035          | 0.035   |         |                      |     |  |
| E4915     | 0.15 | 0.035          | 0.035   |         |                      |     |  |
| E4916     | 0.15 | 0.035          | 0.035   | 400     | 490                  | 20  |  |
| E4918     | 0.15 | 0.035          | 0.035   |         |                      |     |  |
| E4919     | 0.15 | 0.035          | 0.035   | 400     | 490                  | 20  |  |
| E4924     | 0.15 | 0.035          | 0.035   | 400     | 490                  | 16  |  |
| E4927     | 0.15 | 0.035          | 0.035   | 400     | 490                  | 20  |  |
| E4928     | 0.15 | 0.035          | 0.035   | 400     | 490                  | 20  |  |
| E4948     | 0.15 | 0.055          | 0.055   | 400     | 490                  | 20  |  |
| E5716     | 0.12 | 0.030          | 0.030   | 490     | 570                  | 16  |  |
| E5728     | 0.12 | 0.030          | 0.030   | 490     | 370                  | 10  |  |
| E4910-1M3 | 0.12 | 0.030          | 0.030   | 420     | 490                  | 20  |  |
| E4910-P1  | 0.20 | 0.030          | 0.030   | 420     | 490                  | 20  |  |
| E4911-1M3 | 0.12 | 0.030          | 0.030   |         |                      |     |  |
| E4915-1M3 | 0.12 | 0.030          | 0.030   |         |                      |     |  |
| E4916-1M3 | 0.12 | 0.030          | 0.030   | 400     | 490                  | 20  |  |
| E4918-1M3 | 0.12 | 0.030          | 0.030   | 400     | 450                  | 20  |  |
| E4919-1M3 | 0.12 | 0.030          | 0.030   |         |                      |     |  |
| E4920-1M3 | 0.12 | 0.030          | 0.030   |         |                      |     |  |

| Consider     | Chem | nical composit | ion (%) | Y <sub>s</sub> | Us      | 3ء  |  |
|--------------|------|----------------|---------|----------------|---------|-----|--|
| Grade        | С    | Р              | S       | (N/mm²)        | (N/mm²) | (%) |  |
| E4924-1      | 0.15 | 0.035          | 0.035   | 400            | 490     | 20  |  |
| E4927-1M3    | 0.12 | 0.030          | 0.030   | 400            | 490     | 20  |  |
| E5510-P1     | 0.20 | 0.030          | 0.030   | 460            | 550     | 19  |  |
| E57J16-N1M1  | 0.12 | 0.020          | 0.020   | 500            | 570     | 16  |  |
| E57J18-N1M1  | 0.12 | 0.030          | 0.030   | 500            | 570     | 16  |  |
| E5916-3M2    | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E5916-N1M1   | 0.12 | 0.020          | 0.020   | 490            | 590     | 16  |  |
| E5918-N1M1   | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E59J16-N1M1  | 0.12 | 0.030          | 0.030   | 500            | 590     | 16  |  |
| E59J18-N1M1  | 0.12 | 0.030          | 0.050   | 300            | 390     | 10  |  |
| E6216-3M2    | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E6216-NIM1   | 0.12 | 0.030          | 0.030   | 530            | 620     | 15  |  |
| E6216-N2M1   | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E6218-N1M1   | 0.12 | 0.030          | 0.030   | 530            | 620     | 15  |  |
| E6218-N2M1   | 0.12 | 0.030          | 0.030   | 330            | 020     | 13  |  |
| E6916-N3CM1  | 0.12 | 0.030          | 0.030   | 600            | 690     | 14  |  |
| E6916-N4M3   | 0.12 | 0.030          | 0.030   | 000            | 090     | 14  |  |
| E7816-N4CM2  | 0.12 | 0.030          | 0.030   | 690            | 780     | 13  |  |
| E7816-N5CM3  | 0.12 | 0.030          | 0.030   | 690            | 780     | 15  |  |
| E78J16-N4CM2 | 0.12 | 0.030          | 0.030   |                | 780     |     |  |
| E78J16-N5CM3 | 0.12 | 0.030          | 0.030   | 700            |         | 13  |  |
| E78J16-N5M4  | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E4916-N1     | 0.12 | 0.030          | 0.030   |                | 490     | 20  |  |
| E4916-N2     | 0.08 | 0.030          | 0.030   | 390            |         |     |  |
| E4916-N3     | 0.10 | 0.030          | 0.030   | 390            | 490     | 20  |  |
| E4928-N1     | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E5516-N1     | 0.12 | 0.030          | 0.030   | 460            | 550     | 17  |  |
| E5516-N2     | 0.12 | 0.030          | 0.030   | 470 ~ 550      | 550     | 20  |  |
| E5518-N2     | 0.12 | 0.030          | 0.030   | 470 330        | 330     | 20  |  |
| E5518-N2M3   | 0.10 | 0.020          | 0.020   | 460            | 550     | 17  |  |
| E5528-N1     | 0.12 | 0.030          | 0.030   | 400            | 330     | 1,  |  |
| E6216-N4M1   | 0.12 | 0.030          | 0.030   | 580            | 620     | 15  |  |
| E7816-N4C2M1 | 0.12 | 0.030          | 0.030   | 690            | 780     | 13  |  |
| E4916-1      | 0.15 | 0.035          | 0.035   | 400            | 490     | 20  |  |
| E4918-1      | 0.15 | 0.035          | 0.035   | 400            | 430     | 20  |  |
| E4918-N2     | 0.08 | 0.030          | 0.030   | 390            | 490     | 20  |  |
| E5516-3M3    | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E5516-3N3    | 0.10 | 0.030          | 0.030   |                |         |     |  |
| E5516-N3     | 0.10 | 0.030          | 0.030   | 460            | 550     | 17  |  |
| E5518-3M2    | 0.12 | 0.030          | 0.030   | 400            | 330     | 1/  |  |
| E5518-3M3    | 0.12 | 0.030          | 0.030   |                |         |     |  |
| E5518-N3     | 0.10 | 0.030          | 0.030   |                |         |     |  |

| Cuada        | Chem | ical composit | ion (%) | Y <sub>s</sub> | Us      | $\epsilon_{L}$ |
|--------------|------|---------------|---------|----------------|---------|----------------|
| Grade        | С    | Р             | S       | (N/mm²)        | (N/mm²) | (%)            |
| E6215-3M2    | 0.12 | 0.030         | 0.030   |                |         |                |
| E6218-3M2    | 0.12 | 0.030         | 0.030   | 530            | 620     | 15             |
| E6218-3M3    | 0.12 | 0.030         | 0.030   |                |         |                |
| E6218-N3M1   | 0.10 | 0.030         | 0.030   | 540 ~ 620      | 620     | 21             |
| E6915-4M2    | 0.15 | 0.030         | 0.030   |                |         |                |
| E6916-4M2    | 0.15 | 0.030         | 0.030   | 600            | 690     | 14             |
| E6918-4M2    | 0.15 | 0.030         | 0.030   |                |         |                |
| E6918-N3M2   | 0.10 | 0.030         | 0.030   | 610 ~ 690      | 690     | 18             |
| E7618-N4M2   | 0.10 | 0.030         | 0.030   | 680 ~ 760      | 760     | 18             |
| E8318-N4C2M2 | 0.10 | 0.030         | 0.030   | 745 ~ 830      | 830     | 16             |
| E4928-N5     | 0.10 | 0.025         | 0.020   | 390            | 490     | 20             |
| E5516-N5     | 0.12 | 0.030         | 0.030   | 300            | 490     | 17             |
| E5518-N5     | 0.12 | 0.030         | 0.030   | 390            | 490     | 17             |
| E5916-N5M1   | 0.13 | 0.020         | 0.020   | 490            | 590     | 16             |
| E6216-N5M1   | 0.12 | 0.030         | 0.030   | 530            | 620     | 15             |
| E6916-N7CM3  | 0.12 | 0.030         | 0.030   | 600            | 690     | 14             |
| E7816-N5M4   | 0.12 | 0.030         | 0.030   | 690            | 780     | 13             |
| E4915-N5     |      |               |         | 390            | 490     | 20             |
| E4916-N5     | 0.05 | 0.05 0.030    | 0.030   | 330            | 490     | 20             |
| E4918-N5     |      |               |         | 390            | 490     | 20             |
| E5516-N7     | 0.13 | 0.020         | 0.020   | 460            | FF0     | 17             |
| E5518-N7     | 0.12 | 0.030         | 0.030   | 460            | 550     | 17             |
| E7816-N9M3   | 0.12 | 0.030         | 0.030   | 690            | 780     | 13             |
| E4915-N7     |      |               |         |                |         |                |
| E4916-N7     | 0.05 | 0.030         | 0.030   | 390            | 490     | 20             |
| E4918-N7     |      |               |         |                |         |                |
| E5516-N13    | 0.06 | 0.025         | 0.020   | 460            | 550     | 17             |
| E6215-N13L   | 0.05 | 0.030         | 0.030   | 530            | 620     | 15             |
| E49XX-G      | _    |               |         | 400            | 490     | 20             |
| E55XX-G      |      |               |         | 460            | 550     | 17             |
| E57XX-G      | ^    | ۸             | ۸       | 490            | 570     | 16             |
| E57J16-G     |      |               | ļ       | 500            | 570     | 16             |
| E57J18-G     |      |               |         | 500            | 5/0     | 10             |

|          | Chem | ical composit | ion (%) | Y <sub>s</sub> | Us      | ٤٤  |
|----------|------|---------------|---------|----------------|---------|-----|
| Grade    | С    | Р             | S       | (N/mm²)        | (N/mm²) | (%) |
| E59J16-G |      |               |         | 500            | 590     | 16  |
| E59J18-G |      |               |         | 500            | 590     | 16  |
| E6210-G  |      |               |         | 530            | 620     | 15  |
| E6211-G  |      |               |         | 330            | 620     | 15  |
| E6213-G  |      |               |         | 530            | 620     | 12  |
| E6215-G  |      |               |         |                |         |     |
| E6216-G  |      |               |         | 530            | 620     | 15  |
| E6218-G  |      |               |         |                |         |     |
| E6910-G  |      |               |         | 600            | 690     | 14  |
| E6911-G  |      |               |         | 600            | 690     | 14  |
| E6913-G  |      |               |         | 600            | 690     | 11  |
| E6915-G  |      |               |         |                |         |     |
| E6916-G  |      |               |         | 600            | 690     | 14  |
| E6918-G  |      |               |         |                |         |     |
| E7610-G  | ۸    | ۸             | ۸       | 670            | 760     | 13  |
| E7611-G  |      |               |         | 670            | 760     | 13  |
| E7613-G  |      |               |         | 670            | 760     | 11  |
| E7615-G  |      |               |         |                |         |     |
| E7616-G  |      |               |         | 670            | 760     | 13  |
| E7618-G  |      |               |         |                |         |     |
| E7816-G  |      |               |         | 690            | 780     | 13  |
| E78J16-G |      |               |         | 700            | 780     | 13  |
| E78J18-G |      |               |         | 700            | 700     | 13  |
| E8310-G  |      |               |         | 740            | 830     | 12  |
| E8311-G  |      |               |         | 740            | 650     | 12  |
| E8313-G  |      |               |         | 740            | 830     | 10  |
| E8315-G  |      |               |         |                |         |     |
| E8316-G  |      |               |         | 740            | 830     | 12  |
| E8318-G  | ]    |               |         |                |         |     |

E8318-G To be specified by the purchaser.

# A.4 Acceptable Australian/New Zealand steel materials

# A.4.1 Acceptable Australian/New Zealand structural steel: plates

AS/NZS 3678-2016: Structural steel – Hot-rolled plates, floor plates and slabs

| Grade | Thickness** (mm) | Chemical composition (%) |       |       | Max.<br>CEV*** |                                     | Us         | ει  | Impact           |
|-------|------------------|--------------------------|-------|-------|----------------|-------------------------------------|------------|-----|------------------|
|       |                  | С                        | Р     | S     | (%)            | Y <sub>s</sub> (N/mm <sup>2</sup> ) | (N/mm²)    | (%) | toughness<br>(J) |
| 200   | t ≤ 8            | 0.15                     | 0.030 | 0.030 | 0.25           | 200                                 | 300        | 24  | ^                |
|       | 8 < t ≤ 12       |                          |       |       |                | 200                                 |            |     |                  |
|       | 12 < t ≤ 20      |                          |       |       |                | ^                                   |            |     |                  |
|       | 20 < t ≤ 32      |                          |       |       |                | ^                                   | 300        | 24  |                  |
|       | 32 < t ≤ 50      |                          |       |       |                | ^                                   |            |     |                  |
|       | 50 < t ≤ 80      |                          |       |       |                | ^                                   |            |     |                  |
|       | 80 < t ≤ 150     |                          |       |       |                | ^                                   |            |     |                  |
|       | 150 < t ≤ 200    |                          |       |       |                | ۸                                   |            | 23  |                  |
| 250   | t ≤ 8            | 0.22                     | 0.040 | 0.030 | 0.44           | 280                                 | 410        | 22  | 27.J             |
|       | 8 < t ≤ 12       |                          |       |       |                | 260                                 |            |     |                  |
|       | 12 < t ≤ 20      |                          |       |       |                | 250                                 |            |     |                  |
|       | 20 < t ≤ 32      |                          |       |       |                | 250                                 | 410        | 22  |                  |
|       | 32 < t ≤ 50      |                          |       |       |                | 250                                 |            |     |                  |
|       | 50 < t ≤ 80      |                          |       |       |                | 240                                 |            |     |                  |
|       | 80 < t ≤ 150     |                          |       |       |                | 230                                 |            |     |                  |
|       | 150 < t ≤ 200    |                          |       |       |                | 220                                 |            | 21  |                  |
| 200   | t ≤ 8            | 0.22                     | 0.040 | 0.030 | 0.44           | 320                                 | 430        | 21  | 27J              |
|       | 8 ≤ t ≤ 12       |                          |       |       |                | 310                                 |            |     |                  |
|       | 12 < t ≤ 20      |                          |       |       |                | 300                                 |            |     |                  |
|       | 20 < t ≤ 32      |                          |       |       |                | 280                                 | 430        | 21  |                  |
| 300   | 32 < t ≤ 50      |                          |       |       |                | 280                                 |            |     |                  |
|       | 50 < t ≤ 80      |                          |       |       |                | 270                                 |            |     |                  |
|       | 80 < t ≤ 150     |                          |       |       |                | 260                                 |            |     |                  |
|       | 150 < t ≤ 200    |                          |       |       |                | 250                                 |            | 20  |                  |
| 350   | t ≤ 8            | 0.22                     | 0.040 | 0.030 | 0.48           | 360                                 | 450        | 20  | 27Ј              |
|       | 8 ≤ t ≤ 12       |                          |       |       |                | 360                                 |            |     |                  |
|       | 12 < t ≤ 20      |                          |       |       |                | 350                                 |            |     |                  |
|       | 20 < t ≤ 32      |                          |       |       |                | 340                                 | 450<br>450 | 20  |                  |
|       | 32 < t ≤ 50      |                          |       |       |                | 340                                 |            |     |                  |
|       | 50 < t ≤ 80      |                          |       |       |                | 340                                 |            |     |                  |
|       | 80 < t ≤ 150     |                          |       |       |                | 330                                 |            |     |                  |
|       | 150 < t ≤ 200    |                          |       |       |                | 320                                 |            | 19  |                  |
| 400   | t≤8              | - 0.22                   | 0.040 | 0.030 | 0.48           | 400                                 | 480        | 18  | - 40J            |
|       | 8 ≤ t ≤ 12       |                          |       |       |                | 400                                 |            |     |                  |
|       | 12 < t ≤ 20      |                          |       |       |                | 380                                 |            |     |                  |
|       | 20 < t ≤ 32      |                          |       |       |                | 360                                 | 480        | 18  |                  |
|       | 32 < t ≤ 50      |                          |       |       |                | 360                                 |            |     |                  |
|       | 50 < t ≤ 80      |                          |       |       |                | 360                                 |            |     |                  |

| Grade | Thickness**<br>(mm) | Chemical composition (%) |       |       | Max.<br>CEV*** | Y <sub>s</sub> (N/mm²) | Us      | εL  | Impact<br>toughness |
|-------|---------------------|--------------------------|-------|-------|----------------|------------------------|---------|-----|---------------------|
|       |                     | С                        | Р     | S     | (%)            | 15 (14/111111 )        | (N/mm²) | (%) | (J)                 |
| 450   | t ≤ 8               | 0.22                     | 0.040 | 0.030 | 0.48           | 450                    | 520     | 16  | 40J                 |
|       | 8 ≤ t ≤ 12          |                          |       |       |                | 450                    |         |     |                     |
|       | 12 < t ≤ 20         |                          |       |       |                | 450                    |         |     |                     |
|       | 20 < t ≤ 32         |                          |       |       |                | 420                    | 500     | 18  |                     |
|       | 32 < t ≤ 50         |                          |       |       |                | 400                    |         |     |                     |
| WR350 | t ≤ 8               | 0.14                     | 0.160 | 0.030 | ٨              | 340                    | 450     | 20  | 27J                 |
|       | 8 ≤ t ≤ 12          |                          |       |       |                | 340                    |         |     |                     |
|       | 12 < t ≤ 20         |                          |       |       |                | 340                    |         |     |                     |
|       | 20 < t ≤ 32         |                          |       |       |                | 340                    |         |     |                     |
|       | 32 < t ≤ 50         |                          |       |       |                | 340                    |         |     |                     |
|       | 50 < t ≤ 80         |                          |       |       |                | 340                    |         |     |                     |

<sup>^</sup> To be specified by the purchaser.

## with dimensional and/or mass tolerances in accordance with:

#### AS/NZS 1365\*

### Or steel grades manufactured to:-

AS 1548-2008

PT430N

PT430NL0

PT430NL20

PT430NL40

PT430NR

 PT430NRL0 PT430NRL20

PT430NRL40

PT430T

 PT430TL0 PT430TL20

PT430TL40

PT460N

• PT460NL0 PT460NL20

PT460NL40

 PT460NL50 PT460NR

PT460NRL0

PT460NRL0PT460NRL20PT460NRL40PT460NRL50

 PT460T PT460TL0

• PT460TL20

• PT460TL40

PT460TL50

 PT490N PT540T

• PT540TL20

PT540TL40

PT540TL50

PT490NL20

 PT490NL40 PT490NL50

PT490NR

PT490NRL20

PT490NRL40

PT490NRL50

PT490T

PT490TL20

PT490TL40

• PT490TL50

<sup>\*</sup> Plates are rolled on continuous mills. If plates are rolled on reversing mills, width of plate should be less than 2.7 m.

#### A.4.2 Acceptable Australian/New Zealand structural steel sections

Any combination of steel grades manufactured to:-

AS/NZS 3679.1-2016

- 300L0
- · 300L15
- · 300S0
- 350L0
- 350S0

#### A.4.3 Acceptable Australian/New Zealand structural steel: hollow sections

Any combination of steel grades manufactured to:-

AS/NZS 1163-2016

- C250L0
- C350L0
- C450L0

#### A.4.4 Acceptable Australian/New Zealand structural steel: sheet piles

Any certified steel for cold forming (see A.4.6)

#### A.4.5 Acceptable Australian/New Zealand structural steel: solid bars

Hot rolled steel bars manufactured to:-

AS/NZS 3679.1

#### A.4.6 Acceptable Australian/New Zealand structural steel: strips for cold formed open sections

Any combination of steel grades manufactured to:-

AS 1397-2011

- G250
- G300
- G350
- G450
- G500
- G550

with dimensional and/or mass tolerances in accordance with:-

AS/NZS 1365

Or any combination of steel grades manufactured to:-

AS/NZS 1595-1998

- CA 220
- CA 260
- CW 300
- CA 350
- CA 500

with dimensional and/or mass tolerances in accordance with:-AS/NZS 1365-1996\*

#### A.4.7 Acceptable Australian/New Zealand strips for cold-formed profiled sheets

Any combination of steel grades manufactured to:-

AS 1397-2011

- 250
- 300
- 350
- 450
- 500
- 550

with dimensional and/or mass tolerances in accordance with:-

AS/NZS 1365

#### A.4.8 Acceptable Australian/New Zealand stud connectors

Shear stud connectors manufactured to:-

AS/NZS 1554.2\*

NOTE \*Stud diameter should be at least 12.7 mm.

#### A.4.9 Acceptable Australian/New Zealand non-preloaded bolting assemblies

Bolts manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

AS 4291.1\*

AS/NZS 1559

NOTE \* Grade 12.9 is non-certified.

#### Nuts manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

AS/NZS 4291.2

#### Washers manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

#### A.4.10 Acceptable Australian/New Zealand preloaded bolting assemblies

Bolts manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

AS 4291.1\*

#### Nuts manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

AS/NZS 4291.2

Washers manufactured to:-

AS/NZS 1252.1

AS/NZS 1252.2

## A.4.11 Acceptable Australian/New Zealand welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in **3.2.1.11**, and manufactured to:-

AS/NZS 1554.1

AS/NZS 4855

AS/NZS 4857\*

AS 1858.1\*\*

SNZ AS/NZS 16834

SNZ AS/NZS 14341

SNZ AS/NZS 21952

NOTE \*Only grades 55, 62 and 69 are certified.

NOTE \*\*Z is non-certified.

#### A.5 Acceptable Chinese steel materials

#### A.5.1 Acceptable Chinese structural steel: plates

GB/T 700-2006 Carbon structural steels

| Grade | Thickness     | Chemica              | l compositic<br>(%)    | on (Class)             | Max.<br>CEV <sup>a</sup> | γ <sub>s</sub> c | U <sub>s</sub> d | ει  | Impact<br>toughness <sup>b</sup>    |
|-------|---------------|----------------------|------------------------|------------------------|--------------------------|------------------|------------------|-----|-------------------------------------|
| Grade | (mm)          | С                    | Р                      | S                      | (%)                      | (N/mm²)          | (N/mm²)          | (%) | (J)                                 |
|       | t ≤ 16        |                      |                        |                        | 0.35                     | 235              |                  | 26  |                                     |
|       | 16 < t ≤ 40   | 0.22 (4)             | 0.045 (4)              | 0.050 (4)              | 0.35                     | 225              |                  | 20  |                                     |
| Q235  | 40 < t ≤ 60   | 0.22 (A)<br>0.20 (B) | 0.045 (A)<br>0.045 (B) | 0.050 (A)<br>0.045 (B) |                          | 215              | 370 ~ 500        | 25  | ≥ 27J @ 20°C (B)<br>≥ 27J @ 0°C (C) |
| Q235  | 60 < t ≤ 100  | 0.17 (C)             | 0.040 (C)              | 0.040 (C)              | 0.38                     | 215              | 370 300          | 24  | ≥ 27J @ -20°C (D)                   |
|       | 100 < t ≤ 150 | 0.17 (D)             | 0.035 (D)              | 0.035 (D)              |                          | 195              |                  | 22  |                                     |
|       | 150 < t ≤ 200 |                      |                        |                        | 0.40                     | 185              |                  | 21  |                                     |
|       | t ≤ 16        | 0.24 (A)<br>0.21 (B) |                        |                        | 0.40                     | 275              |                  | 22  |                                     |
|       | 16 < t ≤ 40   | 0.20 (C)<br>0.20 (D) | 0.045 (A)              | 0.050 (A)              | 0.40                     | 265              |                  | 22  | ≥ 27J @ 20°C (B)                    |
| Q275  | 40 < t ≤ 60   | 0.24 (A)             | 0.045 (B)<br>0.040 (C) | 0.045 (B)<br>0.040 (C) |                          | 255              | 410 ~ 540        | 21  | ≥ 27J @ 20°C (C)                    |
|       | 60 < t ≤ 100  | , ,                  | 0.045 (C)<br>0.035 (D) | 0.045 (C)<br>0.035 (D) | 0.42                     | 245              |                  | 20  | ≥ 27J @ -20°C (D)                   |
| 100   | 100 < t ≤ 150 |                      | (-)                    |                        |                          | 225              |                  | 18  |                                     |
|       | 150 < t ≤ 200 | 0.20 (D)             |                        |                        | 0.44                     | 215              |                  | 17  |                                     |

Note: a. Values of Max CEV refer to ISO 630-2:2021.

GB/T 1591-2018 High strength low alloy structural steels

|       | Thickness     | Chemical              | compositio             | n (Class) (%)          | Max.              | Y,      | Us          | ε <sub>L</sub> e | Impact                              |
|-------|---------------|-----------------------|------------------------|------------------------|-------------------|---------|-------------|------------------|-------------------------------------|
| Grade | (mm)          | С                     | Рg                     | Sg                     | CEV<br>(%)        | (N/mm²) | (N/mm²)     | (%)              | toughness b<br>(J)                  |
|       | t ≤ 16        | 0.24 (B) <sup>f</sup> |                        |                        | 0.45              | 355     |             | 22               |                                     |
|       | 16 < t ≤ 40   | 0.20 (C)<br>0.20 (D)  |                        |                        | 0.45 <sup>f</sup> | 345     |             | 22               |                                     |
|       | 40 < t ≤ 63   |                       |                        |                        | 0.47              | 335     | 470 ~ 630   | 21               |                                     |
|       | 63 < t ≤ 80   |                       | 0.035 (B)              | 0.035 (B)              |                   | 325     |             | 20               | ≥ 34J @ 20°C (B)<br>≥ 34J @ 0°C (C) |
| Q355  | 80 < t ≤ 100  | 0.24 (B) <sup>f</sup> | 0.030 (C)              | 0.030 (C)              | 0.47              | 315     |             | 20               |                                     |
|       | 100 < t ≤ 150 | 0.22 (C)              | 0.025 (D)              | 0.025 (D)              |                   | 295     | 450 ~ 600   | 18               | ≥ 34J @-20°C (D)                    |
|       | 150 < t ≤ 200 | 0.22 (D)              |                        |                        | 0.49 <sup>g</sup> | 285     | 450 ~ 600   | 17               |                                     |
|       | 200 < t ≤ 250 |                       |                        |                        | 0.49              | 275     | 450 ~ 600   | 17               |                                     |
|       | 250 < t ≤ 400 |                       |                        |                        | 0.49 a            | 265 ª   | 450 ~ 600 ª | 17 ª             |                                     |
|       | t ≤ 16        |                       |                        |                        | 0.45              | 390     |             | 21               |                                     |
|       | 16 < t ≤ 40   |                       |                        |                        | 0.45 f            | 380     |             | 21               |                                     |
| Q390  | 40 < t ≤ 63   | 0.20 (B)<br>0.20 (C)  | 0.035 (B)              | 0.035 (B)              | 0.47              | 360     | 490 ~ 650   | 20               | ≥ 34J @ 20°C (B)                    |
| Q390  | 63 < t ≤ 80   | 0.20 (C)<br>0.20 (D)  | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) |                   | 340     |             | 20               | ≥ 34J @ 0°C (C)<br>≥ 34J @-20°C (D) |
|       | 80 < t ≤ 100  |                       | 0.030 (D)              | 0.023 (D)              | 0.48              | 340     |             | 20               |                                     |
|       | 100 < t ≤ 150 |                       |                        |                        |                   | 320     | 470 ~ 620   | 19               |                                     |

b. Longitudinal test pieces. If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class. Class A steel material has no requirement for toughness.

c. For nominal thickness > 100 mm, lower limit of tensile strength can be decreased by 20 N/mm<sup>2</sup>.

| 'Continue | •                          | Chemical                         | composition                         | ı (Class) (%)                       | Max. |                      |                |                  | Impact                                                   |
|-----------|----------------------------|----------------------------------|-------------------------------------|-------------------------------------|------|----------------------|----------------|------------------|----------------------------------------------------------|
| Grade     | Thickness                  |                                  |                                     |                                     | CEV  | Y <sub>s</sub>       | U <sub>s</sub> | ε <sub>L</sub> e | toughness b                                              |
|           | (mm)                       | С                                | Pg                                  | Sg                                  | (%)  | (N/mm <sup>2</sup> ) | (N/mm²)        | (%)              | (1)                                                      |
|           | t ≤ 16                     |                                  |                                     |                                     |      | 355                  |                | 22               | ≥ 34J @ 20°C (B)                                         |
| •         | 16 < t ≤ 40                |                                  |                                     |                                     | 0.43 | 345                  |                | 22               | . ≥ 34J @ 0°C (C)<br>≥ 55J @ 20°C (D)                    |
| -         | 40 < t ≤ 63                |                                  |                                     |                                     |      | 335                  | 470 ~ 630      | 22               | ≥ 47J @ 0°C (D)                                          |
| -         |                            | 0.20 (B)                         | 0.035 (B)                           | 0.035 (B)                           |      |                      | 470 630        |                  | ≥ 40J @-20°C (D)<br>≥ 63J @ 20°C (E)                     |
| Q355N     | 63 < t ≤ 80                | 0.20 (C)<br>0.20 (D)             | 0.030 (C)<br>0.030 (D)              | 0.030 (C)<br>0.025 (D)              | 0.45 | 325                  |                | 21               | ≥ 55J @ 0°C (E)                                          |
|           | 80 < t ≤ 100               | 0.18 (E)                         | 0.025 (E)                           | 0.020 (E)                           |      | 315                  |                |                  | ≥ 47J @-20°C (E)<br>≥ 31J @-40°C (E)                     |
|           | 100 < t ≤ 150              | 0.16 (F)                         | 0.020 (F)                           | 0.010 (F)                           |      | 295                  | 450 % 600      | 21               | ≥ 63J @ 20°C (F)                                         |
| •         | 150 < t ≤ 200              |                                  |                                     |                                     | 0.45 | 285                  | 450 ~ 600      |                  | ≥ 55J @ 0°C (F)<br>≥ 47J @-20°C (F)                      |
| -         | 200 < t ≤ 250              |                                  |                                     |                                     |      | 275                  | 450 ~ 600      | 21               | ≥ 31J @-40°C (F)                                         |
|           | t ≤ 16                     |                                  |                                     |                                     |      | 390                  |                | 20               | ≥ 27J @-60°C (F)                                         |
|           | 16 < t ≤ 40                |                                  |                                     |                                     | 0.46 | 380                  |                | 20               | ≥ 34J @ 20°C (B)                                         |
| -         | 40 < t ≤ 63                |                                  |                                     |                                     | 0.40 | 360                  | 490 ~ 650      | 20               | ≥ 34J @ 0°C (C)<br>≥ 55J @ 20°C (D)                      |
| -         |                            | 0.20 (B)                         | 0.035 (B)                           | 0.035 (B)                           |      | 340                  | 490 030        | 19               | ≥ 47J @ 0°C (D)                                          |
| Q390N     | 63 < t ≤ 80                | 0.20 (C)<br>0.20 (D)             | 0.030 (C)<br>0.030 (D)              | 0.030 (C)<br>0.025 (D)              | 0.48 |                      |                | 19               | ≥ 40J @-20°C (D)                                         |
| -         | 80 < t ≤ 100               | 0.20 (D)<br>0.20 (E)             | 0.030 (D)<br>0.025 (E)              | 0.023 (D)<br>0.020 (E)              |      | 340                  |                |                  | ≥ 63J @ 20°C (E)                                         |
| -         | 100 < t ≤ 150              | ,                                | ,                                   | ( )                                 |      | 320                  | 470 ~ 620      | 19               | ≥ 55J @ 0°C (E)                                          |
| -         | 150 < t ≤ 200              |                                  |                                     |                                     | 0.49 | 310                  |                |                  | ≥ 47J @-20°C (E)<br>≥ 31J @-40°C (E)                     |
|           | 200 < t ≤ 250              |                                  |                                     |                                     |      | 300                  | 470 ~ 620      | 19               | 2 311 @ 40 C (L)                                         |
|           | t ≤ 16                     |                                  |                                     |                                     |      | 420                  |                | 19               | - ≥ 34J @ 20°C (B)                                       |
|           | $16 < t \le 40$            |                                  |                                     |                                     | 0.48 | 400                  |                | 19               | ≥ 34J @ 0°C (C)                                          |
|           | 40 < t ≤ 63                | 0.20 (B)<br>0.20 (C)             | 0.035 (B)<br>0.030 (C)              | 0.035 (B)<br>0.030 (C)              |      | 390                  | 520 ~ 680      | 19               | ≥ 55J @ 20°C (D)                                         |
| •         | 63 < t ≤ 80                |                                  |                                     |                                     | 370  |                      | 18             | ≥ 47J @ 0°C (D)  |                                                          |
| Q420N     | 80 < t ≤ 100               | 0.20 (D)                         | 0.030 (D)                           | 0.025 (D)                           | 0.50 | 360                  |                |                  | ≥ 40J @-20°C (D)                                         |
| •         | 100 < t ≤ 150              | 0.20 (E)                         | 0.025 (E)                           | 0.020 (E)                           |      | 340                  |                | 18               | ≥ 63J @ 20°C (E)<br>≥ 55J @ 0°C (E)                      |
| -         | 150 < t ≤ 200              |                                  |                                     |                                     | 0.52 | 330                  | 500 ~ 650      |                  | ≥ 47J @-20°C (E)                                         |
| -         | 200 < t ≤ 250              |                                  |                                     |                                     | 0.32 | 320                  | 500 ~ 650      | 18               | ≥ 31J @-20°C (E)                                         |
|           | t ≤ 16                     |                                  |                                     |                                     |      | 460                  | 300 030        | 17               |                                                          |
| -         | 16 < t ≤ 40                |                                  |                                     |                                     | 0.53 | 440                  |                | 17               | ≥ 34J @ 0°C (C)                                          |
| -         | 40 < t ≤ 63                |                                  |                                     |                                     | 0.55 | 430                  | 540 ~ 720      | 17               | ≥ 55J @ 20°C (D)                                         |
| -         | 40 < t ≤ 80<br>63 < t ≤ 80 | 0.20 (C)                         | 0.030 (C)                           | 0.030 (C)                           |      | 410                  | 340 720        |                  | ≥ 47J @ 0°C (D)                                          |
| Q460N     |                            | 0.20 (D)                         | 0.030 (D)                           | 0.025 (D)                           | 0.54 |                      |                | 17               | ≥ 40J @-20°C (D)<br>≥ 63J @ 20°C (E)                     |
|           | 80 < t ≤ 100               | 0.20 (E)                         | 0.025 (E)                           | 0.020 (E)                           |      | 400                  |                |                  | ≥ 55J @ 20°C (E)                                         |
| -         | 100 < t ≤ 150              |                                  |                                     |                                     |      | 380                  | 530 ~ 710      | 17               | ≥ 47J @-20°C (E)                                         |
|           | 150 < t ≤ 200              |                                  |                                     |                                     | 0.55 | 370                  |                |                  | ≥ 31J @-20°C (E)                                         |
|           | 200 < t ≤ 250              |                                  |                                     |                                     |      | 370                  | 530 ~ 690      | 17               |                                                          |
|           | t ≤ 16                     |                                  |                                     |                                     | 0.39 | 355                  | 470 ~ 630      |                  | ≥ 34J @ 20°C (B)<br>≥ 34J @ 0°C (C)                      |
|           | 16 < t ≤ 40                |                                  |                                     |                                     | 0.39 | 345                  | 170 030        |                  | ≥ 55J @ 20°C (D)<br>≥ 47J @ 0°C (D)<br>≥ 40J @-20°C (D)  |
| 035514    | 40 < t ≤ 63                | 0.030<br>0.030<br>0.030<br>0.025 | 0.035 (B)<br>0.030 (C)              | 0.035 (B)<br>0.030 (C)              | 0.40 | 335                  | 450 ~ 610      | 22               | ≥ 63J @ 20°C (E)<br>≥ 55J @ 0°C (E)                      |
| Q355M     | 63 < t ≤ 80                |                                  | 0.030 (D)<br>0.025 (E)<br>0.020 (F) | 0.025 (D)<br>0.020 (E)<br>0.010 (F) | 0.45 | 325                  | 440 ~ 610      | 22               | ≥ 47J @-20°C (E)<br>≥ 31J @-40°C (E)                     |
|           | 80 < t ≤ 100               |                                  |                                     | 0.010 (F)                           | 0.45 | 325                  | 440 ~ 600      |                  | ≥ 63J @ 20°C (F)<br>≥ 55J @ 0°C (F)<br>≥ 47J @-20°C (F)  |
|           | 100 < t ≤ 120 <sup>k</sup> |                                  |                                     |                                     | 0.45 | 320                  | 430 ~ 590      |                  | ≥ 473 @-20°C (F)<br>≥ 313 @-40°C (F)<br>≥ 273 @-60°C (F) |

| Grade | Thickness       | Chemic            | al compositi           | on (Class) (%)         | Max.<br>CEV | Y <sub>s</sub>       | Us         | ε <sub>L</sub> e | Impact                                                  |
|-------|-----------------|-------------------|------------------------|------------------------|-------------|----------------------|------------|------------------|---------------------------------------------------------|
| Grade | (mm)            | С                 | Рg                     | Sg                     | (%)         | (N/mm <sup>2</sup> ) | (N/mm²)    | (%)              | toughness b<br>(J)                                      |
|       | t ≤ 16          |                   |                        |                        | 0.41        | 390                  |            |                  | ≥ 34J @ 20°C (B)                                        |
|       | 16 < t ≤ 40     |                   |                        |                        | 0.43        | 380                  | 490 ~ 650  |                  | ≥ 34J @ 0°C (C)                                         |
|       | 40 < t ≤ 63     |                   | 0.035 (B)              | 0.035 (B)              | 0.44        | 360                  | 480 ~ 640  |                  | ≥ 55J @ 20°C (D)<br>≥ 47J @ 0°C (D)                     |
| Q390M | 63 < t ≤ 80     | 0.15 h            | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) | 0.46        | 340                  | 470 ~ 630  | 20               | ≥ 40J @-20°C (D)                                        |
|       | 80 < t ≤ 100    |                   | 0.025 (E)              | 0.020 (E)              | 0.46        | 340                  | 460 ~ 620  |                  | ≥ 63J @ 20°C (E)                                        |
|       | 100 < t ≤ 120 k |                   |                        |                        | 0.46        | 335                  | 450 ~ 610  |                  | ≥ 55J @ 0°C (E)<br>≥ 47J @-20°C (E)<br>≥ 31J @-40°C (E) |
|       | t ≤ 16          |                   |                        |                        | 0.43        | 420                  | 520 e. 600 |                  | ≥ 34J @ 20°C (B)                                        |
|       | 16 < t ≤ 40     |                   |                        |                        | 0.45        | 400                  | 520 ~ 680  |                  | ≥ 34J @ 0°C (C)                                         |
|       | 40 < t ≤ 63     |                   | 0.035 (B)              | 0.035 (B)              | 0.46        | 390                  | 500 ~ 660  |                  | ≥ 55J @ 20°C (D)<br>≥ 47J @ 0°C (D)                     |
| Q420M | 63 < t ≤ 80     | 0.16 <sup>h</sup> | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) | 0.47        | 380                  | 480 ~ 640  | 19               | ≥ 40J @-20°C (D)                                        |
|       | 80 < t ≤ 100    |                   | 0.025 (E)              | 0.020 (E)              | 0.47        | 370                  | 470 ~ 630  |                  | ≥ 63J @ 20°C (E)                                        |
|       | 100 < t ≤ 120 k |                   |                        |                        | 0.47        | 365                  | 460 ~ 620  |                  | ≥ 55J @ 0°C (E)<br>≥ 47J @-20°C (E)<br>≥ 31J @-20°C (E) |
|       | t ≤ 16          |                   |                        |                        | 0.45        | 460                  | 540 et 720 |                  | ≥ 34J @ 0°C (C)                                         |
|       | 16 < t ≤ 40     |                   |                        |                        | 0.46        | 440                  | 540 ~ 720  |                  | ≥ 55J @ 20°C (D)<br>≥ 47J @ 0°C (D)                     |
|       | 40 < t ≤ 63     |                   | 0.030 (C)              | 0.030 (C)              | 0.47        | 430                  | 530 ~ 710  |                  | ≥ 471 @ 0°C (D)<br>≥ 40J @-20°C (D)                     |
| Q460M | 63 < t ≤ 80     | 0.16 <sup>h</sup> | 0.030 (D)<br>0.025 (E) | 0.025 (D)<br>0.020 (E) | 0.48        | 410                  | 510 ~ 690  | 17               | ≥ 63J @ 20°C (E)                                        |
|       | 80 < t ≤ 100    |                   | 0.023 (2)              | 0.020 (2)              | 0.48        | 400                  | 500 ~ 680  |                  | ≥ 55J @ 0°C (E)                                         |
|       | 100 < t ≤ 120 k |                   |                        |                        | 0.48        | 385                  | 490 ~ 660  |                  | ≥ 47J @-20°C (E)<br>≥ 31J @-20°C (E)                    |
|       | t ≤ 16          |                   |                        |                        | 0.47        | 500                  | 640 0 770  |                  |                                                         |
|       | 16 < t ≤ 40     |                   | 0.030 (C)              | 0.030 (C)              | 0.47        | 490                  | 610 ~ 770  |                  | ≥ 55J @ °C (C)                                          |
| Q500M | 40 < t ≤ 63     | 0.18              | 0.030 (D)              | 0.025 (D)              | 0.47        | 480                  | 600 ~ 760  | 17               | ≥ 47J @-20°C (D)                                        |
|       | 63 < t ≤ 80     |                   | 0.025 (E)              | 0.020 (E)              | 0.48        | 460                  | 590 ~ 750  |                  | ≥ 31J @-40°C (E)                                        |
|       | 80 < t ≤ 100    |                   |                        |                        | 0.48        | 450                  | 540 ~ 730  |                  |                                                         |
|       | t ≤ 16          |                   |                        |                        | 0.47        | 550                  | 670 ~ 830  |                  |                                                         |
|       | 16 < t ≤ 40     |                   | 0.030 (C)              | 0.030 (C)              | 0.47        | 540                  | 070 830    |                  | ≥ 55J @ °C (C)                                          |
| Q550M | 40 < t ≤ 63     | 0.18              | 0.030 (D)              | 0.025 (D)              | 0.47        | 530                  | 620 ~ 810  | 16               | ≥ 47J @-20°C (D)<br>≥ 55J @ °C (C)                      |
|       | 63 < t ≤ 80     |                   | 0.025 (E)              | 0.020 (E)              | 0.48        | 510                  | 600 ~ 790  |                  | ≥ 47J @-20°C (D)                                        |
|       | 80 < t ≤ 100    |                   |                        |                        | 0.10        | 500                  | 590 ~ 780  |                  |                                                         |
|       | t ≤ 16          |                   | 0.000 (0)              | 0.000 (6)              | 0.48        | 620                  | 710 ~ 880  |                  | > 241 0 4000 (5)                                        |
| Q620M | 16 < t ≤ 40     | 0.18              | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) | 0.48        | 610                  | 710 000    | 15               | ≥ 31J @-40°C (E)<br>≥ 55J @ °C (C)                      |
| QOZOW | 40 < t ≤ 63     | 0.10              | 0.025 (E)              | 0.020 (E)              | 0.48        | 600                  | 690 ~ 880  |                  | ≥ 47J @-20°C (D)                                        |
|       | 63 < t ≤ 80     |                   |                        |                        | 0.49        | 580                  | 670 ~ 860  |                  |                                                         |
|       | t ≤ 16          |                   | 0.020 (0)              | 0.020 (0)              | 0.49        | 690                  | 770 ~ 940  |                  | > 211 @ 4000 (5)                                        |
| Q690M | 16 < t ≤ 40     | 0.18              | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) | 0.49        | 680                  |            | 14               | ≥ 31J @-40°C (E)<br>≥ 55J @ °C (C)                      |
|       | 40 < t ≤ 63     |                   | 0.025 (E)              | 0.020 (E)              | 0.49        | 670                  | 750 ~ 920  |                  | ≥ 47J @-20°C (D)                                        |
|       | 63 < t ≤ 80     |                   |                        |                        | 0.49        | 650                  | 730 ~ 900  |                  |                                                         |

Note: a. Only for steel plate of quality level D class.

b. Longitudinal test pieces. If temperature is not specified, it depends on the quality level:  $20^{\circ}\text{C}$  for B class,  $0^{\circ}\text{C}$  for B class,

- d. Only for Q345D steel plates with thickness > 250 mm.
- e. Longitudinal test pieces.
- f. When nominal thickness > 30 mm: C = 0.22% max, Max. CEV = 0.47% for Q355, Q390.
- g. For section steels and steel bars the P and S content can be 0.005% higher, max. CEV of Q355 can be up to 0.54%.
- h. For Q355M, Q390M, Q420M and Q460M, the C content of section steels and steel bars can be 0.02% higher.
- k. For section steels and steel bars the nominal thickness or diameter ≤ 150 mm:

C class, -20°C for D class and -40°C for E class. c. Only for section steels and steel bars.

Atmospheric corrosion resisting structural steel GB/T 4171-2008:

|           | Thickness    | Chei | mical composition | on (%) | Max.       | Ys                   | Us                   | £L  | Impact **           |
|-----------|--------------|------|-------------------|--------|------------|----------------------|----------------------|-----|---------------------|
| Grade     | (mm)         | С    | Р                 | S      | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | toughness **<br>(J) |
|           | t ≤ 16       |      |                   |        | ,          | 235                  |                      | 25  |                     |
| 0225844   | 16 < t ≤ 40  | 0.42 | 0.020             | 0.020  | ^          | 225                  | 260 % 540            | 25  |                     |
| Q235NH    | 40 < t ≤ 60  | 0.13 | 0.030             | 0.030  | _ ^        | 215                  | 360~510              | 24  |                     |
|           | 60 < t ≤ 100 |      |                   |        |            | 215                  |                      | 23  |                     |
| Q265GNH   | t ≤ 3.5      | 0.12 | 0.070 ~ 0.120     | 0.020  | ٨          | 265                  | ≥410                 | 27  |                     |
|           | t ≤ 16       |      |                   |        |            | 295                  |                      | 24  |                     |
| Q295NH    | 16 < t ≤ 40  | 0.15 | 0.030             | 0.030  | ^          | 285                  | 430 ~ 560            | 24  |                     |
| QZ93NH    | 40 < t ≤ 60  | 0.13 | 0.030             | 0.030  |            | 275                  | 450 500              | 23  |                     |
|           | 60 < t ≤ 100 |      |                   |        |            | 255                  |                      | 22  |                     |
| OZOFCNIII | t ≤ 16       | 0.12 | 0.070 ~ 0.120     | 0.020  | ^          | 295                  | 430 ~ 560            | 24  |                     |
| Q295GNH   | 16 < t ≤ 20  | 0.12 | 0.070 0.120       | 0.020  |            | 285                  | 430 300              | 24  |                     |
| Q310GNH   | t ≤ 3.5      | 0.12 | 0.070 ~0.120      | 0.020  | ۸          | 310                  | ≥450                 | 26  |                     |
|           | t ≤ 16       |      |                   |        |            | 355                  |                      | 22  |                     |
| OSEENIH   | 16 < t ≤ 40  | 0.16 | 0.030             | 0.030  | ٨          | 345                  | 490 ~ 630            | 22  | ≥ 47J B)            |
| Q355NH    | 40 < t ≤ 60  | 0.16 | 0.030             | 0.030  |            | 335                  | 490 030              | 21  | ≥ 34J (C)           |
|           | 60 < t ≤ 100 |      |                   |        |            | 325                  |                      | 20  | ≥ 34J (D)           |
| Q355GNH   | t ≤ 16       | 0.12 | 0.070 ~ 0.150     | 0.020  | ^          | 355                  | 490 ~ 630            | 22  | ≥ 27J (E)           |
| QSSSGINIT | 16 < t ≤ 20  | 0.12 | 0.070 0.130       | 0.020  |            | 345                  | 490 030              | 22  |                     |
|           | t ≤ 16       |      |                   |        |            | 415                  |                      | 22  |                     |
| Q415NH    | 16 < t ≤ 40  | 0.12 | 0.025             | 0.030  | ٨          | 405                  | 520 ~ 680            | 22  |                     |
|           | 40 < t ≤ 60  |      |                   |        |            | 395                  |                      | 20  |                     |
|           | t ≤ 16       |      |                   |        |            | 460                  |                      | 20  |                     |
| Q460NH    | 16 < t ≤ 40  | 0.12 | 0.025             | 0.030  | ^          | 450                  | 570 ~ 730            | 20  |                     |
|           | 40 < t ≤ 60  |      |                   |        |            | 440                  |                      | 19  |                     |
|           | t ≤ 16       |      |                   |        |            | 500                  |                      | 18  |                     |
| Q500NH    | 16 < t ≤ 40  | 0.12 | 0.025             | 0.030  | ^          | 490                  | 600 ~ 760            | 16  |                     |
|           | 40 < t ≤ 60  |      |                   |        |            | 480                  |                      | 15  |                     |
|           | t ≤ 16       |      |                   |        |            | 550                  |                      | 16  |                     |
| Q550NH    | 16 < t ≤ 40  | 0.16 | 0.025             | 0.030  | ^          | 540                  | 620 ~ 780            | 16  |                     |
|           | 40 < t ≤ 60  |      |                   |        |            | 530                  |                      | 15  |                     |

To be specified by the purchaser.

If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class, -20°C for D class and -40°C for E class.

Class A steel material has no requirement for toughness.

GB/T 19879-2015: Steel plate for building structure

| Cuada  | Thickness                         | Chemical                         | composition                         | (Class) (%)                         | Max.                              | Ys        | Us        | ε <sub>L</sub> | Impact                 |
|--------|-----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------|-----------|----------------|------------------------|
| Grade  | (mm)                              | С                                | Р                                   | S                                   | CEV **<br>(%)                     | (N/mm²)   | (N/mm²)   | (%)            | toughness*<br>(J)      |
|        | 6 ≤ t ≤ 16                        |                                  |                                     |                                     | 0.24 (AD NI)                      | ≥ 235     |           |                |                        |
| 022501 | 16 < t ≤ 50                       | 0.20 (B)<br>0.20 (C)             | 0.025 (B)<br>0.025 (C)              | 0.015 (B)<br>0.015 (C)              | 0.34 (AR, N)                      | 235 ~ 345 | 400 ~ 510 | 22             | > 471 /Doc5)           |
| Q235GJ | 50 < t ≤ 100                      | 0.18 (D)<br>0.18 (E)             | 0.020 (D)<br>0.020 (E)              | 0.010 (D)<br>0.010 (E)              | 0.36 (AR, N)                      | 225 ~ 355 |           | 23             | ≥ 47J (B~E)            |
|        | 100 < t ≤ 150                     | (-)                              | 0.0_0 (_/                           | 0.020 (2)                           | 0.38 (AR, N)                      | 215 ~ 325 | 380 ~ 510 |                |                        |
|        | 6 ≤ t ≤ 16                        |                                  |                                     |                                     | 0.42 (AR, N)                      | ≥ 345     |           |                |                        |
|        | 16 < t ≤ 50                       | 0.20 (B)                         | 0.025 (B)                           | 0.015 (B)                           | 0.38 (M)                          | 345 ~ 455 | 490 ~ 610 |                |                        |
| Q345GJ | 50 < t ≤ 100                      | 0.20 (C)<br>0.18 (D)             | 0.025 (C)<br>0.020 (D)              | 0.015 (C)<br>0.010 (D)              | 0.44 (AR, N)<br>0.40 (M)          | 335 ~ 455 |           | 22             | ≥ 47J (B~E)            |
|        | 100 < t ≤ 150                     | 0.18 (E)                         | 0.020 (E)                           | 0.010 (E)                           | 0.46 (AR, N)                      | 325 ~ 435 | 470 ~ 610 |                |                        |
|        | 150 < t ≤ 200                     |                                  |                                     |                                     | 0.47 (AR, N)                      | 305 ~ 415 | 470 ~ 610 |                |                        |
|        | 6 ≤ t ≤ 16                        |                                  |                                     |                                     | 0.45 (AR, N)                      | ≥ 390     |           |                |                        |
| Q390GJ | 16 < t ≤ 50                       | 0.20 (B)<br>0.20 (C)             | 0.025 (B)<br>0.025 (C)              | 0.015 (B)<br>0.015 (C)              | 0.40 (M)                          | 390 ~ 510 | 510 ~ 660 | 20             | > 471 (D~F)            |
| Q390G3 | 50 < t ≤ 100                      | 0.18 (D)<br>0.18 (E)             | 0.020 (D)<br>0.020 (E)              | 0.010 (D)<br>0.010 (E)              | 0.47 (AR, N)<br>0.43 (M)          | 380 ~ 500 |           | 20             | ≥ 47J (B~E)            |
|        | 100 < t ≤ 150                     |                                  |                                     |                                     | 0.49 (AR, N)                      | 370 ~ 490 | 490 ~ 640 |                |                        |
|        | 6 ≤ t ≤ 16                        |                                  |                                     |                                     | 0.48 (AR, N)<br>0.44 (Q)          | ≥ 420     |           |                |                        |
|        | 16 < t ≤ 50                       | 0.20 (B)                         | 0.025 (B)                           | 0.015 (B)                           | 0.40 (M)                          | 420 ~ 550 | 530 ~ 680 |                |                        |
| Q420GJ | 50 < t ≤ 100                      | 0.20 (C)<br>0.18 (D)<br>0.18 (E) | 0.025 (C)<br>0.020 (D)<br>0.020 (E) | 0.015 (C)<br>0.010 (D)<br>0.010 (E) | 0.50 (AR, N)<br>0.47 (Q)<br>^ (M) | 410 ~ 540 |           | 20             | ≥ 47J (B~E)            |
|        | 100 < t ≤ 150                     |                                  |                                     |                                     | 0.52 (AR, N)<br>0.49 (Q)          | 400 ~ 530 | 510 ~ 660 |                |                        |
|        | 6 ≤ t ≤ 16                        |                                  |                                     |                                     | 0.52 (AR, N)                      | ≥ 460     |           |                |                        |
|        | 16 < t ≤ 50                       | 0.20 (B)                         | 0.025 (B)                           | 0.015 (B)                           | 0.45 (Q)<br>0.42 (M)              | 460 ~ 600 | 570 ~ 720 |                |                        |
| Q460GJ | 50 < t ≤ 100                      | 0.20 (C)<br>0.18 (D)<br>0.18 (E) | 0.025 (C)<br>0.020 (D)<br>0.020 (E) | 0.015 (C)<br>0.010 (D)<br>0.010 (E) | 0.54 (AR, N)<br>0.48 (Q)<br>^ (M) | 450 ~ 590 |           | 18             | ≥ 47J (B~E)            |
|        | 100 < t ≤ 150                     |                                  |                                     |                                     | 0.56 (AR, N)<br>0.50 (Q)          | 440 ~ 580 | 550 ~ 720 |                |                        |
| 050001 | 12 ≤ t ≤ 20                       | 0.18 (C)                         | 0.025 (C)                           | 0.015 (C)                           | 0.52 (Q)                          | ≥ 500     | 640 % 770 | 47             | ≥ 55J (C)              |
| Q500GJ | 20 < t ≤ 40                       | 0.18 (D)<br>0.18 (E)             | 0.020 (D)<br>0.020 (E)              | 0.010 (D)<br>0.010 (E)              | 0.47 (M)                          | 500~ 640  | 610 ~ 770 | 17             | ≥ 47J (D)<br>≥ 31J (E) |
| Q550GJ | 12 ≤ t ≤ 20                       | 0.18 (C)                         | 0.025 (C)                           | 0.015 (C)<br>0.010 (D)              | 0.54 (Q)                          | ≥ 550     | 670 ~ 830 | 17             | ≥ 55J (C)              |
| นรรบษา | 20 < t ≤ 40                       | 0.18 (D)<br>0.18 (E)             | 0.020 (D)<br>0.020 (E)              | 0.010 (D)<br>0.010 (E)              | 0.47 (M)                          | 550 ~ 690 | 670 ~ 830 | 17             | ≥ 47J (D)<br>≥ 31J (E) |
| Q620GJ | 12 ≤ t ≤ 20                       | 0.18 (C)<br>0.18 (D)             | 0.025 (C)<br>0.020 (D)              | 0.015 (C)<br>0.010 (D)              | 0.58 (Q)                          | ≥ 620     | 730 ~900  | 17             | ≥ 55J (C)<br>≥ 47J (D) |
| QUZUGJ | 20 < t ≤ 40                       | 0.18 (D)<br>0.18 (E)             | 0.020 (D)<br>0.020 (E)              | 0.010 (D)<br>0.010 (E)              | 0.48 (M)                          | 620 ~ 770 | 730 900   | 1/             | ≥ 473 (D)<br>≥ 31J (E) |
| Q690GJ | 12 ≤ t ≤ 20                       | 0.18 (C)<br>0.18 (D)             | 0.025 (C)<br>0.020 (D)              | 0.015 (C)<br>0.010 (D)              | 0.60 (Q)                          | ≥ 690     | 770 ~ 940 | 14             | ≥ 55J (C)<br>≥ 47J (D) |
|        | $20 < t \le 40$ pecified by the p | 0.18 (E)                         | 0.020 (E)                           | 0.010 (E)                           | 0.50 (M)                          | 690 ~ 860 | 310       |                | ≥ 31J (E)              |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class, -20°C for D class and -40°C for E class. Class A steel material has no requirement for toughness.

<sup>\*\*</sup> If the delivery condition is not specified, the lowest limit is adopted. Delivery conditions of AR, N, Q and M should refer to Section 2.1.

High strength structural steel plates in the quenched and tempered GB/T 16270-2009: condition

| Grade          | Thickness     | Chemi | cal compositio         | n (Class) (%)          | Max.<br>CEV ** | Y <sub>s</sub>       | Us                   | εL  | Impact<br>toughness*       |  |
|----------------|---------------|-------|------------------------|------------------------|----------------|----------------------|----------------------|-----|----------------------------|--|
| Grade          | (mm)          | С     | Р                      | S                      | (%)            | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | (J)                        |  |
| Q460C          | t ≤ 50        |       | 0.025 (C)              | 0.015 (C)              | 0.47           | 460                  | 550 ~ 720            |     |                            |  |
| Q460D<br>Q460E | 50 < t ≤ 100  | 0.20  | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.48           | 440                  | 330 720              | 17  | ≥ 47J (C,D)<br>≥ 34J (E,F) |  |
| Q460F          | 100 < t ≤ 150 |       | 0.020 (E)              | 0.010 (F)              | 0.50           | 400                  | 500 ~ 670            |     | = 3 13 (2,17               |  |
| Q500C          | t ≤ 50        |       | 0.025 (C)              | 0.015 (C)              | 0.47           | 500                  | 590 ~ 770            |     |                            |  |
| Q500D<br>Q500E | 50 < t ≤ 100  | 0.20  | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.70           | 480                  | 590 ~ 770            | 17  | ≥ 47J (C,D)<br>≥ 47J (C,D) |  |
| Q500F          | 100 < t ≤ 150 |       | 0.020 (E)              | 0.010 (F)              | 0.70           | 440                  | 540 ~ 720            |     | = 173 (0,0)                |  |
| Q550C          | t ≤ 50        |       | 0.025 (C)              | 0.015 (C)              | 0.65           | 550                  | 640 ~ 820            |     |                            |  |
| Q550D<br>Q550E | 50 < t ≤ 100  | 0.20  | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.77           | 530                  | 040 820              | 16  | ≥ 34J (E,F)<br>≥ 47J (C,D) |  |
| Q550F          | 100 < t ≤ 150 |       | 0.020 (E)              | 0.010 (F)              | 0.83           | 490                  | 590 ~ 770            |     | ∠ 4/3 (C,D)                |  |
| Q620C          | t ≤ 50        |       | 0.025 (C)              | 0.015 (C)              | 0.65           | 620                  | 700 ~ 890            |     |                            |  |
| Q620D<br>Q620E | 50 < t ≤ 100  | 0.20  | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.77           | 580                  | 700 890              | 15  | ≥ 47J (C,D)<br>≥ 47J (C,D) |  |
| Q620F          | 100 < t ≤ 150 |       | 0.020 (E)              | 0.010 (F)              | 0.83           | 560                  | 650 ~ 830            |     | = :/* (0)2)                |  |
| Q690C          | t ≤ 50        |       | 0.025 (C)              | 0.015 (C)              | 0.65           | 690                  | 770 ~ 940            |     |                            |  |
| Q690D<br>Q690E | 50 < t ≤ 100  | 0.20  | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.77           | 650                  | 760 ~ 930            | 14  | ≥ 34J (E,F)                |  |
| Q690F          | 100 < t ≤ 150 |       | 0.020 (E)              | 0.010 (F)              | 0.83           | 630                  | 710 ~ 900            |     |                            |  |

with dimensional and/or mass tolerances in accordance with:-

GB/T 709

To be specified by the purchaser.

If temperature is not specified, it depends on the quality level: 0°C for C class, -20°C for D class, -40°C for E class and -60°C for F class.

#### A.5.2 Acceptable Chinese structural steel: sections

#### GB/T 700-2006 Carbon structural steels

|   | Grade |      | Chemical o                         | composition | (Class) (%) | Max.<br>CEV | Y <sub>s</sub> 2) | U <sub>s</sub> d | ει  | Impact           |
|---|-------|------|------------------------------------|-------------|-------------|-------------|-------------------|------------------|-----|------------------|
|   | Graue | (mm) | С                                  | Р           | S           | (%)         | (N/mm²)           | (N/mm²)          | (%) | toughness<br>(J) |
| Ī | Q235  |      |                                    |             | Dofor to CI | )/T 700 in  | Costion A F 1     | 1                |     |                  |
|   | Q275  |      | Refer to GB/T 700 in Section A.5.1 |             |             |             |                   |                  |     |                  |

## GB/T 1591-2018 High strength low alloy structural steels

| Cuada | Thickness     | Chemical | composition   | n (Class) (%) | Max.       | Ys                   | Us        | ε <sub>L</sub> e | Impact                        |  |  |
|-------|---------------|----------|---------------|---------------|------------|----------------------|-----------|------------------|-------------------------------|--|--|
| Grade | (mm)          | С        | Pg            | Sg            | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²)   | (%)              | toughness <sup>b</sup><br>(J) |  |  |
| Q355  | t ≤ 400       |          |               | Rofe          | r to GR/T  | 1591 in Sectio       | n 1 5 1   |                  |                               |  |  |
| Q390  | t ≤ 150       |          |               | Nejer         | T to GD/T  | 1391 111 300010      | II A.J.1  |                  |                               |  |  |
|       | t ≤ 16        |          |               |               | 0.45       | 420                  |           | 20               |                               |  |  |
|       | 16 < t ≤ 40   |          |               |               | 0.45 f     | 410                  |           | 20               |                               |  |  |
| Q420  | 40 < t ≤ 63   | 0.20 (B) | 0.035 (B)     | 0.035 (B)     | 0.47       | 390                  | 520 ~ 680 | 19               | ≥ 34J (B)                     |  |  |
| Q420  | 63 < t ≤ 80   | 0.20 (C) | 0.030 (C)     | 0.030 (C)     |            | 370                  |           | 19               | ≥ 34J (C)                     |  |  |
|       | 80 < t ≤ 100  |          |               |               | 0.48       | 370                  |           | 19               |                               |  |  |
|       | 100 < t ≤ 150 |          |               |               |            | 350                  | 500 ~ 650 | 19               |                               |  |  |
|       | t ≤ 16        |          |               |               | 0.47       | 460                  |           | 18               |                               |  |  |
|       | 16 < t ≤ 40   |          | 0.47 f 450 18 |               |            |                      |           |                  |                               |  |  |
| Q460  | 40 < t ≤ 63   | 0.20 (C) | 0.030 (C)     | 0.030 (C)     | 0.49       | 430                  | 550 ~ 720 | 17               | ≥ 34J (C)                     |  |  |
| Q400  | 63 < t ≤ 80   | 0.20 (C) | 0.030 (C)     | 0.030 (C)     |            | 410                  |           | 17               | ≥ 341 (C)                     |  |  |
|       | 80 < t ≤ 100  |          |               |               | 0.49       | 410                  |           | 17               |                               |  |  |
|       | 100 < t ≤ 150 |          |               |               |            | 390                  | 530 ~ 700 | 17               |                               |  |  |
| Q355N | t ≤ 250       |          |               |               |            |                      |           |                  |                               |  |  |
| Q390N | t ≤ 250       |          |               |               |            |                      |           |                  |                               |  |  |
| Q420N | t ≤ 250       |          |               |               |            |                      |           |                  |                               |  |  |
| Q460N | t ≤ 250       |          |               |               |            |                      |           |                  |                               |  |  |
| Q355M | t ≤ 150       |          |               |               |            |                      |           |                  |                               |  |  |
| Q390M | t ≤ 150       |          |               | Dofo          | " to CD/T  | 1501 in Costio       | n A F 1   |                  |                               |  |  |
| Q420M | t ≤ 150       |          |               | кеје          | I to GB/I  | 1591 in Sectio       | II A.5.1  |                  |                               |  |  |
| Q460M | t ≤ 150       |          |               |               |            |                      |           |                  |                               |  |  |
| Q500M | t ≤ 100       |          |               |               |            |                      |           |                  |                               |  |  |
| Q550M | t ≤ 100       |          |               |               |            |                      |           |                  |                               |  |  |
| Q620M | t ≤ 80        |          |               |               |            |                      |           |                  |                               |  |  |
| Q690M | t ≤ 80        |          |               |               |            |                      |           |                  |                               |  |  |

lote: b. Longitudinal test pieces. If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class, -20°C for D class and -40°C for E class.

e. Longitudinal test pieces.

g. For section steels and steel bars the P and S content can be 0.005% higher.

f. When nominal thickness > 30 mm: C = 0.22% max, Max. CEV = 0.47% for Q420, Max. CEV = 0.49% for Q460.

#### GB/T 4171-2008: Atmospheric corrosion resisting structural steel

| Cuada      | Thickness   | Chei | mical composition | on (%)     | Max.                                                            | Y <sub>s</sub>       | Us                   | εL  | Impact                 |  |  |  |
|------------|-------------|------|-------------------|------------|-----------------------------------------------------------------|----------------------|----------------------|-----|------------------------|--|--|--|
| Grade      | (mm)        | С    | Р                 | S          | CEV<br>(%)                                                      | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | toughness **<br>(J)    |  |  |  |
| Q235NH     | t ≤ 100     |      | F                 |            |                                                                 |                      |                      |     |                        |  |  |  |
| Q295NH     | t ≤ 100     |      | F                 |            |                                                                 |                      |                      |     |                        |  |  |  |
| 0305 CNIII | t ≤ 16      |      | F                 | Refer to G | B/T 159:                                                        | 1 in Section A.      | 5.1                  |     | ≥ 47J B)               |  |  |  |
| Q295GNH    | 16 < t ≤ 40 | 0.12 | 0.070 ~ 0.120     | 0.020      | ٨                                                               | 285                  | 430 ~ 560            | 24  | ≥ 34J (C)<br>≥ 34J (D) |  |  |  |
| Q355NH     | t ≤ 100     |      | F                 | Refer to G | B/T 159:                                                        | 1 in Section A.      | 5.1                  |     | ≥ 27J (E)              |  |  |  |
| OSEECNIII  | t ≤ 16      |      | F                 | •          |                                                                 |                      |                      |     |                        |  |  |  |
| Q355GNH    | 16 < t ≤ 40 | 0.12 | 0.070 ~ 0.150     | 0.020      | Refer to GB/T 1591 in Section A.5.1  0.12  0.070 ~ 0.150  0.020 |                      |                      |     |                        |  |  |  |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:-  $GB/T\ 706$  or  $GB/T\ 11263-2010$ 

<sup>\*</sup> The dimension in bracket is only for section steels.

<sup>\*\*</sup> If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class, -20°C for D class and -40°C for E class. Class A steel material has no requirement for toughness.

## A.5.3 Acceptable Chinese structural steel: hollow sections

#### GB/T 700-2006 Carbon structural steels

| Grade Thickness |      | Chemical o | composition | (Class) (%) | Max.       | Ys            | U <sub>s</sub> d     | ει  | Impact           |
|-----------------|------|------------|-------------|-------------|------------|---------------|----------------------|-----|------------------|
| Grade           | (mm) | С          | Р           | S           | CEV<br>(%) | (N/mm²)       | (N/mm <sup>2</sup> ) | (%) | toughness<br>(J) |
| Q235            |      |            |             | Pofor to CE | 7 700 in   | Section A.5.1 | 1                    |     |                  |
| Q275            |      |            |             | nejer to GE | )          | SECTION A.S.1 |                      |     |                  |

## GB/T 1591-2018 High strength low alloy structural steels

| Cuada | Thickness | Chemical | compositio                          | n (Class) (%) | Max.       | Y <sub>s</sub>       | Us                   | ε <sub>L</sub> | Impact           |  |  |  |  |
|-------|-----------|----------|-------------------------------------|---------------|------------|----------------------|----------------------|----------------|------------------|--|--|--|--|
| Grade | (mm)      | С        | Р                                   | S             | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)            | toughness<br>(J) |  |  |  |  |
| Q355  | t ≤ 400   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q390  | t ≤ 150   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q355N | t ≤ 250   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q390N | t ≤ 250   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q420N | t ≤ 250   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q460N | t ≤ 250   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q355M | t ≤ 150   |          | Refer to GB/T 1591 in Section A.5.1 |               |            |                      |                      |                |                  |  |  |  |  |
| Q390M | t ≤ 150   |          |                                     | кеје          | to GB/T.   | 1591 III SECTIO      | II A.5.1             |                |                  |  |  |  |  |
| Q420M | t ≤ 150   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q460M | t ≤ 150   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q500M | t ≤ 100   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q550M | t ≤ 100   |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q620M | t ≤ 80    |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |
| Q690M | t ≤ 80    |          |                                     |               |            |                      |                      |                |                  |  |  |  |  |

## GB/T 4171-2008: Atmospheric corrosion resisting structural steel

| Crada   | Thickness | Cher                                | Chemical composition (%) |   |     | Y <sub>s</sub>       | Us                   | ε <sub>L</sub> | Impact             |  |  |  |
|---------|-----------|-------------------------------------|--------------------------|---|-----|----------------------|----------------------|----------------|--------------------|--|--|--|
| Grade   | (mm)      | С                                   | Р                        | S | (%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)            | toughness**<br>(J) |  |  |  |
| Q235NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q265GNH |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q295NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q295GNH |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q310GNH |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q355NH  |           | Refer to GB/T 4171 in Section A.5.1 |                          |   |     |                      |                      |                |                    |  |  |  |
| Q355GNH |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q415NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q460NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q500NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |
| Q550NH  |           |                                     |                          |   |     |                      |                      |                |                    |  |  |  |

with dimensional and/or mass tolerances in accordance with: GB/T 6728 or GB/T 6725  $\,$ 

GB/T 8162-2018: Seamless steel tubes for structural purposes

| Grade | Thickness                            | Chemical             | compositio             | n (Class) (%)          | Max.<br>CEV **          | Y <sub>s</sub>       | Us                   | EL.              | Impact toughness*          |
|-------|--------------------------------------|----------------------|------------------------|------------------------|-------------------------|----------------------|----------------------|------------------|----------------------------|
|       | (mm)                                 | С                    | Р                      | S                      | (%)                     | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)              | (1)                        |
|       | t ≤ 16                               | 0.20 (A)<br>0.20 (B) | 0.030 (A)<br>0.030 (B) | 0.030 (A)<br>0.030 (B) | 0.45 (AR,N)             | 345                  |                      | 20 (A)<br>20 (B) |                            |
| Q345  | 16 < t ≤ 30                          | 0.20 (C)             | 0.030 (C)              | 0.030 (C)              | 0.47 (AR,N)             | 325                  | 470 ~ 630            | 21 (C)           | ≥ 34J (B,C,D)<br>≥ 27J (E) |
|       | 30 < t                               | 0.18 (D)<br>0.18 (E) | 0.030 (D)<br>0.025 (B) | 0.025 (D)<br>0.020 (B) | 0.48 (AR,N)             | 295                  |                      | 21 (D)<br>21 (E) | = 273 (L)                  |
|       | t ≤ 16                               | 0.20 (A)<br>0.20 (B) | 0.030 (A)<br>0.030 (B) | 0.030 (A)<br>0.030 (B) | 0.46 (AR,N)             | 390                  |                      | 18 (A)<br>18 (B) |                            |
| Q390  | 16 < t ≤ 30                          | 0.20(C)              | 0.030 (C)              | 0.030 (C)              | 0.48 (AR,N)             | 370                  | 490 ~ 650            | 19 (C)           | ≥ 34J (B,C,D)<br>≥ 27J (E) |
|       | 30 < t                               | 0.20(D)<br>0.20(E)   | 0.030 (D)<br>0.025 (E) | 0.025 (D)<br>0.020 (E) | 0.49 (AR,N)             | 350                  |                      | 19 (D)<br>19 (E) | ≥ 273 (L)                  |
|       | t ≤ 16                               | 0.20 (A)             | 0.030 (A)              | 0.030 (A)              | 0.48 (AR,N)             | 420                  |                      | 18 (A)           |                            |
| Q420  | 16 < t ≤ 30                          | 0.20 (B)<br>0.20 (C) | 0.030 (B)<br>0.030 (C) | 0.030 (B)<br>0.030 (C) | 0.50 (AR,N)<br>0.48 (Q) | 400                  | 520 ~ 680            | 18 (B)<br>19 (C) | ≥ 34J (B,C,D)<br>≥ 27J (E) |
|       | 30 < t                               | 0.20 (D)<br>0.20 (E) | 0.030 (D)<br>0.025 (E) | 0.025 (D)<br>0.020 (E) | 0.50 (AR,N)<br>0.48 (Q) | 380                  |                      | 19 (D)<br>19 (E) |                            |
|       | t ≤ 16                               | (2)                  |                        | 2 222 (2)              | 0.53 (AR,N)<br>0.48 (Q) | 460                  |                      |                  |                            |
| Q460  | 16 < t ≤ 30                          | 0.20 (C)<br>0.20 (D) | 0.030 (C)<br>0.030 (D) | 0.030 (C)<br>0.025 (D) | 0.55 (AR,N)<br>0.50 (Q) | 440                  | 550 ~ 720            | 17               | ≥ 34J (C,D)<br>≥ 27J (E)   |
|       | 30 < t                               | 0.20 (E)             | 0.025 (E)              | 0.020 (E)              | 0.55 (AR,N)<br>0.50 (Q) | 420                  |                      |                  | , ,                        |
|       | t ≤ 16                               | 0.18 (C)             | 0.025 (C)              | 0.020 (C)              | 0.48 (Q)                | 500                  |                      |                  | ≥ 55J (C)                  |
| Q500  | 16 < t ≤ 30                          | 0.18 (D)             | 0.025 (D)              | 0.015 (D)              | 0.50 (Q)                | 480                  | 610 ~ 770            | 17               | ≥ 47J (D)                  |
|       | 30 < t                               | 0.18 (E)             | 0.020 (E)              | 0.010 (E)              | 0.50 (Q)                | 440                  |                      |                  | ≥ 31J (E)                  |
|       | t ≤ 16                               | 0.18 (C)             | 0.025 (C)              | 0.020 (C)              | 0.48 (Q)                | 550                  |                      |                  | ≥ 55J (C)                  |
| Q550  | 16 < t ≤ 30                          | 0.18 (D)<br>0.18 (E) | 0.025 (D)<br>0.020 (E) | 0.015 (D)<br>0.010 (E) | 0.50 (Q)                | 530                  | 670 ~ 830            | 16               | ≥ 47J (D)                  |
|       | 30 < t                               | U.18 (E)             | 0.020 (E)              | 0.010 (E)              | 0.50 (Q)                | 490                  |                      |                  | ≥ 31J (E)                  |
|       | t ≤ 16                               | 0.18 (C)             | 0.025 (C)              | 0.020 (C)              | 0.50 (Q)                | 620                  |                      |                  | ≥ 55J (C)                  |
| Q620  | 16 < t ≤ 30                          | 0.18 (D)             | 0.025 (D)              | 0.015 (D)              | 0.52 (Q)                | 590                  | 710 ~ 880            | 15               | ≥ 47J (D)                  |
|       | 30 < t                               | 0.18 (E)             | 0.020 (E)              | 0.010 (E)              | 0.52 (Q)                | 550                  |                      |                  | ≥ 31J (E)                  |
|       | t ≤ 16                               | 0.18 (C)             | 0.025 (C)              | 0.020 (C)              | 0.50 (Q)                | 690                  |                      |                  | ≥ 55J (C)                  |
| Q690  | 0 $16 < t \le 30$ 0.18 (D) 0.025 (D) | 0.015 (D)            | 0.52 (Q)               | 660                    | 770 ~ 940               | 14                   | ≥ 47J (D)            |                  |                            |
|       | 30 < t                               | 0.18 (E)             | 0.020 (E)              | 0.010 (E)              | 0.52 (Q)                | 620                  |                      |                  | ≥ 31J (E)                  |

<sup>\*</sup> If temperature is not specified, it depends on the quality level: 20°C for B class, 0°C for C class, -20°C for D class and -40°C for E class. Class A steel material has no requirement for toughness.

with dimensional and/or mass tolerances in accordance with: GB/T 8162 or GB/T 17395

<sup>\*\*</sup> If the delivery condition is not specified, the lowest limit is adopted. Delivery conditions of AR, N, Q and M should refer to Section 2.1.

#### A.5.4 Acceptable Chinese structural steel: sheet piles

GB/T 20933-2014: Hot rolled sheet pile

| Grade | Thickness      | Chemica | al composi | ition (%) | Max. CEV Y <sub>s</sub> (N/mm²) |                             | Us        | ει  | Impact           |
|-------|----------------|---------|------------|-----------|---------------------------------|-----------------------------|-----------|-----|------------------|
| Grade | (mm)           | С       | Р          | S         | (%)                             | T <sub>S</sub> (IN/IIIIII-) | (N/mm²)   | (%) | toughness<br>(J) |
| Q295P | 8.8 < t ≤ 27.6 | 0.16    | 0.035      | 0.035     | 0.40                            | 295                         | 390 ~ 570 | 23  | ٨                |
| Q345P | 8.8 < t ≤ 27.6 | 0.20    | 0.035      | 0.035     | 0.42                            | 345                         | 480~630   | 22  | ^                |
| Q390P | 8.8 < t ≤ 27.6 | 0.20    | 0.035      | 0.035     | 0.44                            | 390                         | 490 ~ 650 | 20  | ^                |
| Q420P | 8.8 < t ≤ 27.6 | 0.20    | 0.035      | 0.035     | 0.46                            | 420                         | 520 ~ 680 | 19  | ^                |
| Q460P | 8.8 < t ≤ 27.6 | 0.20    | 0.030      | 0.030     | 0.46                            | 460                         | 550~720   | 17  | ^                |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with: GB/T 20933

#### A.5.5 Acceptable Chinese structural steel: solid bars

GB/T 700-2006 Carbon structural steels

| Grade | Thickness | Chemical composition (Class) (%)  CEV  CEV  (**CEV**) |                                    | Ys          | U <sub>s</sub> d | ει            | Impact<br>toughness  |     |     |  |
|-------|-----------|-------------------------------------------------------|------------------------------------|-------------|------------------|---------------|----------------------|-----|-----|--|
| Grade | (mm)      | С                                                     | Р                                  | S           | (%)              | (N/mm²)       | (N/mm <sup>2</sup> ) | (%) | (J) |  |
| Q235  |           |                                                       |                                    | Pofor to CE | )/T 700 in       | Castian A E 1 | ,                    |     |     |  |
| Q275  |           |                                                       | Refer to GB/T 700 in Section A.5.1 |             |                  |               |                      |     |     |  |

GB/T 1591-2018 High strength low alloy structural steels

| Cuada | Thickness | Chemical | compositio | n (Class) (%) | Max.       | Ys             | Us                   | ε <sub>L</sub> e | Impact             |  |  |  |  |  |
|-------|-----------|----------|------------|---------------|------------|----------------|----------------------|------------------|--------------------|--|--|--|--|--|
| Grade | (mm)      | С        | Рg         | Sg            | CEV<br>(%) | (N/mm²)        | (N/mm <sup>2</sup> ) | (%)              | toughness b<br>(J) |  |  |  |  |  |
| Q355  | t ≤ 400   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q390  | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q420  | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q460  | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q355N | t ≤ 250   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q390N | t ≤ 250   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q420N | t ≤ 250   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q460N | t ≤ 250   |          |            | Defe          | CD/T       | 1501 in Contin | - 452                |                  |                    |  |  |  |  |  |
| Q355M | t ≤ 150   |          |            | кеје          | to GB/T.   | 1591 in Sectio | n A.5.2              |                  |                    |  |  |  |  |  |
| Q390M | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q420M | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q460M | t ≤ 150   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q500M | t ≤ 100   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q550M | t ≤ 100   |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q620M | t ≤ 80    |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |
| Q690M | t ≤ 80    |          |            |               |            |                |                      |                  |                    |  |  |  |  |  |

with dimensional and/or mass tolerances in accordance with: GB/T 702

## A.5.6 Acceptable Chinese structural steel: strips for cold formed open sections

## GB/T 700-2006 Carbon structural steels

| Grado | Thickness | Chemical                           | Chemical composition (Class) (%)  Max.  Ys  CEV (N/mm² |             | Ys        | U <sub>s</sub> d | ει                   | Impact |                  |  |
|-------|-----------|------------------------------------|--------------------------------------------------------|-------------|-----------|------------------|----------------------|--------|------------------|--|
| Grade | (mm)      | С                                  | Р                                                      | S           | (%)       | (N/mm²)          | (N/mm <sup>2</sup> ) | (%)    | toughness<br>(J) |  |
| Q235  |           |                                    |                                                        | Pofor to CE | /T 700 in | Castian A E 1    | ,                    |        |                  |  |
| Q275  |           | Refer to GB/T 700 in Section A.5.1 |                                                        |             |           |                  |                      |        |                  |  |

## GB/T 1591-2018 High strength low alloy structural steels

| Curale | Thickness | Chemical | compositio                          | n (Class) (%) | Max.       | Ys                   | Us                   | ε <sub>L</sub> e | Impact             |  |  |  |  |  |
|--------|-----------|----------|-------------------------------------|---------------|------------|----------------------|----------------------|------------------|--------------------|--|--|--|--|--|
| Grade  | (mm)      | С        | Рg                                  | Sg            | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)              | toughness b<br>(J) |  |  |  |  |  |
| Q355   | t ≤ 400   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q390   | t ≤ 150   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q355N  | t ≤ 250   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q390N  | t ≤ 250   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q420N  | t ≤ 250   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q460N  | t ≤ 250   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q355M  | t ≤ 150   |          | Refer to GB/T 1591 in Section A.5.1 |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q390M  | t ≤ 150   |          |                                     | кеје          | lo GB/T.   | 1591 III SECTIO      | II A.5.1             |                  |                    |  |  |  |  |  |
| Q420M  | t ≤ 150   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q460M  | t ≤ 150   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q500M  | t ≤ 100   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q550M  | t ≤ 100   |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q620M  | t ≤ 80    |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |
| Q690M  | t ≤ 80    |          |                                     |               |            |                      |                      |                  |                    |  |  |  |  |  |

## GB/T 4171-2008: Atmospheric corrosion resisting structural steel

| Grado   | Thickness | Cher | Chemical composition (%) |    |            | Ys             | Us                   | $\epsilon_{L}$ | Impact toughness ** |  |  |  |  |
|---------|-----------|------|--------------------------|----|------------|----------------|----------------------|----------------|---------------------|--|--|--|--|
| Grade   | (mm)      | С    | Р                        | S  | CEV<br>(%) | (N/mm²)        | (N/mm <sup>2</sup> ) | (%)            | (J)                 |  |  |  |  |
| Q235NH  | t ≤ 100   |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q265GNH | t ≤ 3.5   |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q295NH  | t ≤ 100   |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q295GNH | t ≤ 20    |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q310GNH | t ≤ 3.5   |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q355NH  | t ≤ 100   |      |                          | Re | fer to GL  | B/T 4171 in Se | ction A.5.1          |                |                     |  |  |  |  |
| Q355GNH | t ≤ 20    |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q415NH  | t ≤ 60    |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q460NH  | t ≤ 60    |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q500NH  | t ≤ 60    |      |                          |    |            |                |                      |                |                     |  |  |  |  |
| Q550NH  | t ≤ 60    |      |                          |    |            |                |                      |                |                     |  |  |  |  |

## GB/T 19879-2015: Steel plate for building structure

| Crado  | Thickness   | Chemical | composition | (Class) (%) | Max.          | Ys                   | Us                   | ε <sub>L</sub> | Impact           |  |  |  |
|--------|-------------|----------|-------------|-------------|---------------|----------------------|----------------------|----------------|------------------|--|--|--|
| Grade  | (mm)        | С        | Р           | S           | CEV<br>(%)    | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%)            | toughness<br>(J) |  |  |  |
| Q235GJ | 6 ≤ t ≤ 150 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q345GJ | 6 ≤ t ≤ 200 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q390GJ | 6 ≤ t ≤ 150 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q420GJ | 6 ≤ t ≤ 150 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q460GJ | 6 ≤ t ≤ 150 |          |             | Refer       | to GB/T 19879 | in Section A.        | 5.1                  |                |                  |  |  |  |
| Q500GJ | 12 ≤ t ≤ 40 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q550GJ | 12 ≤ t ≤ 40 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q620GJ | 12 ≤ t ≤ 40 |          |             |             |               |                      |                      |                |                  |  |  |  |
| Q690GJ | 12 ≤ t ≤ 40 |          |             |             |               |                      |                      |                |                  |  |  |  |

# GB/T 16270-2009: High strength structural steel plates in the quenched and tempered condition

| Crada                            | Thickness | Chemi | cal compositio | n (Class) (%) | Max.            | Y <sub>s</sub>       | Us                   | ει  | Impact           |
|----------------------------------|-----------|-------|----------------|---------------|-----------------|----------------------|----------------------|-----|------------------|
| Grade                            | (mm)      | С     | Р              | S             | CEV<br>(%)      | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | toughness<br>(J) |
| Q460C<br>Q460D<br>Q460E<br>Q460F | t ≤ 150   |       |                |               |                 |                      |                      |     |                  |
| Q500C<br>Q500D<br>Q500E<br>Q500F | t ≤ 150   |       |                |               |                 |                      |                      |     |                  |
| Q550C<br>Q550D<br>Q550E<br>Q550F | t ≤ 150   |       |                | Refer         | to GB/T 16270 i | in Section A         | 5.1                  |     |                  |
| Q620C<br>Q620D<br>Q620E<br>Q620F | t ≤ 150   |       |                |               |                 |                      |                      |     |                  |
| Q690C<br>Q690D<br>Q690E<br>Q690F | t ≤ 150   |       |                |               |                 |                      |                      |     |                  |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:  $\mbox{GB/T}\ 709$ 

<sup>\*</sup> If temperature is not specified, it depends on the quality level: 0°C for C class, -20°C for D class, -40°C for E class and -60°C for F class.

#### A.5.7 Acceptable Chinese strips for cold-formed profiled sheetings

GB/T 2518-2019: Continuously hot-dip zinc-coated steel sheet and strip

| Grade*                   | Thickness   | Chemic | cal compos | ition (%) | Ys      | Us      | ει  | Impact           |
|--------------------------|-------------|--------|------------|-----------|---------|---------|-----|------------------|
| Grade                    | (mm)        | С      | Р          | S         | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| S220GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 220     | 300     | 20  | ۸                |
| S250GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 250     | 330     | 19  | ۸                |
| S280GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 280     | 360     | 18  | ۸                |
| S300GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 300     | 370     | 18  | ۸                |
| S320GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 | 0.20   | 0.10       | 0.045     | 320     | 390     | 17  | ۸                |
| S350GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 | 0.20   | 0.10       | 0.045     | 350     | 420     | 16  | ۸                |
| S390GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 390     | 460     | 16  | ٨                |
| S420GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 420     | 480     | 15  | ٨                |
| S450GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 450     | 510     | 14  | ۸                |
| S550GD+Z (+ZF, +ZA, +AZ) | 0.2 ≤ t ≤ 6 |        |            |           | 550     | 560     | ۸   | ۸                |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with: GB/T 2518 and GB/T 25052

### A.5.8 Acceptable Chinese stud shear connectors

GB/T 10433-2002: Cheese head studs for arc stud welding

| Crada  | Chemic | cal composit | tion (%) | Y <sub>s</sub> | Us      | $\epsilon_{L}$ | Impact           |
|--------|--------|--------------|----------|----------------|---------|----------------|------------------|
| Grade  | С      | Р            | S        | (N/mm²)        | (N/mm²) | (%)            | toughness<br>(J) |
| ML15   | 0.18   | 0.035        | 0.035    | 320            | 400     | 14             | ۸                |
| ML15Al | 0.18   | 0.035        | 0.035    | 320            | 400     | 14             | ٨                |

<sup>^</sup> To be specified by the purchaser.

<sup>\*</sup> Pure zinc coating is expressed in "Z"; zinc-iron alloy coating is expressed in "ZF"; zinc- aluminum alloy coating is expressed in "ZA"; aluminum-zinc alloy coating is expressed in "AZ".

## A.5.9 Acceptable Chinese non-preloaded bolting assemblies

GB/T 3098.1-2010: Mechanical properties of fasteners – Bolts, screws and studs

| Cuada | Diameter    | Chemica     | al composition | ı (%) | Ys      | S <sub>p</sub> f |     | Impact           |
|-------|-------------|-------------|----------------|-------|---------|------------------|-----|------------------|
| Grade | (mm)        | С           | Р              | S     | (N/mm²) | (N/mm²)          | (%) | toughness<br>(J) |
| 4.6   | 3 ≤ D ≤ 39  | ≤ 0.55      | 0.050          | 0.060 | 240     | 400              | 22  | ۸                |
| 4.8   | 3 ≤ D ≤ 39  | ≤ 0.55      | 0.050          | 0.060 | 340     | 420              | 24  | ۸                |
| 5.6   | 3 ≤ D ≤ 39  | 0.13 ~ 0.55 | 0.050          | 0.060 | 300     | 500              | 20  | 27J @ -20°C      |
| 5.8   | 3 ≤ D ≤ 39  | ≤ 0.55      | 0.050          | 0.060 | 420     | 520              | 22  | ۸                |
| 6.8   | 3 ≤ D ≤ 39  | 0.15 ~ 0.55 | 0.050          | 0.060 | 480     | 600              | 20  | ۸                |
| 8.8   | 3 ≤ D ≤ 16  | 0.15 ~ 0.55 | 0.025          | 0.025 | 640     | 800              | 12  | 27J @ -20℃       |
| 0.0   | 16 < D ≤ 39 | 0.15 0.55   | 0.025          | 0.025 | 660     | 830              | 12  |                  |
| 9.8   | 3 ≤ D ≤ 16  | 0.15 ~ 0.55 | 0.025          | 0.025 | 720     | 900              | 10  | 27 J @ -20°C     |
| 10.9  | 3 ≤ D ≤ 39  | 0.20 ~ 0.55 | 0.025          | 0.025 | 940     | 1040             | 9   | 27 J @ -20°C     |
| 12.9  | 3 ≤ D ≤ 39  | 0.28 ~ 0.50 | 0.025          | 0.025 | 1100    | 1220             | 8   | ۸                |

<sup>^</sup> To be specified by the purchaser.

## GB/T 3098.2-2015: Mechanical properties of fasteners – Nuts

#### 1. Coarse thread

| Cuada | Dian                    | neter      | Chem | nical compositio | n (%) | S <sub>p</sub> <sup>f</sup> | $\epsilon_{L}$ |
|-------|-------------------------|------------|------|------------------|-------|-----------------------------|----------------|
| Grade | (m                      | m)         | С    | Р                | S     | (N/mm²)                     | (%)            |
| 04    | 5 ≤ D ≤ 39              |            | 0.58 | 0.060            | 0.150 | 380                         | ۸              |
| 05    | 5 ≤ D                   | 9 ≤ 39     | 0.58 | 0.048            | 0.058 | 500                         | ۸              |
| 5     | 5 ≤ D                   | 9 ≤ 39     | 0.58 | 0.060            | 0.150 | 520 ~ 630                   | ۸              |
| 6     | 5 ≤ D                   | 9 ≤ 39     | 0.58 | 0.060            | 0.150 | 600 ~ 720                   | ۸              |
|       | High nut                | 5 ≤ D ≤ 39 | 0.58 | 0.060            | 0.150 |                             |                |
| 8     | Dogular nut             | 5 ≤ D ≤ 16 | 0.58 | 0.060            | 0.150 | 800 ~ 920                   | ۸              |
|       | Regular nut 16 < D ≤ 39 |            | 0.58 | 0.048            | 0.058 |                             | ۸              |
| 10    | 5 ≤ D ≤ 39              |            | 0.58 | 0.048            | 0.058 | 1040 ~ 1060                 | ۸              |
| 12    | 5 ≤ D ≤ 39              |            | 0.58 | 0.048            | 0.058 | 1140 ~ 1200                 | ۸              |

#### 2. Fine pitch thread

| Crada | Diam        | neter                   | Chen | nical compositio | n (%) | S <sub>p</sub> <sup>f</sup> | ει  |
|-------|-------------|-------------------------|------|------------------|-------|-----------------------------|-----|
| Grade | (m          | m)                      | С    | Р                | S     | (N/mm²)                     | (%) |
| 04    | 5 ≤ D ≤ 39  |                         | 0.58 | 0.060            | 0.150 | 380                         | ۸   |
| 05    | 5 ≤ D       | ≤ 39                    | 0.58 | 0.048            | 0.058 | 500                         | ۸   |
| 5     | 5 ≤ D       | ≤ 39                    | 0.58 | 0.060            | 0.150 | 690 ~ 720                   | ۸   |
|       | 5 ≤ D       | ≤ 16                    | 0.58 | 0.060            | 0.150 | 770 ~ 780                   | ۸   |
| 6     | 16 < [      | 0 ≤ 39                  | 0.58 | 0.048            | 0.058 | 870 ~ 930                   |     |
| 8     | High nut    | 16 + D + 20             | 0.58 | 0.060            | 0.150 | 200 ~ 1000                  | ۸   |
| 8     | Regular nut | Regular nut 16 < D ≤ 39 |      | 0.048            | 0.058 | 890 ~ 1090                  | ۸   |
| 10    | 5 ≤ D ≤ 39  |                         | 0.58 | 0.048            | 0.058 | 1100~ 1080                  | ۸   |
| 12    | 5 ≤ D ≤ 39  |                         | 0.58 | 0.048            | 0.058 | 1200                        | ۸   |

<sup>^</sup> To be specified by the purchaser.

## A.5.10 Acceptable Chinese preloaded bolting assemblies

Refer to **Section A.5.9** 

## A.5.11 Acceptable Chinese welding consumables

GB/T 5117-2012: Covered electrodes for manual metal arc welding of non-alloy and fine grain steels

| Grado   | Chem | ical composit | ion (%) | Y <sub>s</sub> | Us        | $\epsilon_{L}$ |
|---------|------|---------------|---------|----------------|-----------|----------------|
| Grade   | С    | Р             | S       | (N/mm²)        | (N/mm²)   | (%)            |
| E4303   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4310   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4311   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4312   | 0.20 | 0.040         | 0.035   | 330 430        |           | 16             |
| E4313   | 0.20 | 0.040         | 0.035   | 330            | 330 430   |                |
| E4315   | 0.20 | 0.040         | 0.035   | 330            | 430       | 16             |
| E4316   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4318   | 0.03 | 0.025         | 0.015   | 330            | 430       | 20             |
| E4319   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4320   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4324   | 0.20 | 0.040         | 0.035   | 330            | 430       | 16             |
| E4327   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4328   | 0.20 | 0.040         | 0.035   | 330            | 430       | 20             |
| E4340   | ۸    | 0.040         | 0.035   | 330            | 430       | 20             |
| E5003   | 0.15 | 0.040         | 0.035   | 400            | 490       | 20             |
| E5010   | 0.20 | 0.035         | 0.035   | 400            | 490 ~ 650 | 20             |
| E5011   | 0.20 | 0.035         | 0.035   | 400            | 490 ~ 650 | 20             |
| E5012   | 0.20 | 0.035         | 0.035   | 400            | 490       | 16             |
| E5013   | 0.20 | 0.035         | 0.035   | 400            | 490       | 16             |
| E5014   | 0.15 | 0.035         | 0.035   | 400            | 490       | 16             |
| E5015   | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5016   | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5016-1 | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5018   | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5018-1 | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5019   | 0.15 | 0.035         | 0.035   | 400            | 490       | 20             |
| E5024   | 0.15 | 0.035         | 0.035   | 400            | 490       | 16             |
| E5024-1 | 0.15 | 0.035         | 0.035   | 400 490        |           | 20             |
| E5027   | 0.15 | 0.035         | 0.035   | 400 490        |           | 20             |
| E5028   | 0.15 | 0.035         | 0.035   | 400 490        |           | 20             |
| E5048   | 0.15 | 0.035         | 0.035   | 400 490        |           | 20             |
| E5716   | 0.12 | 0.030         | 0.030   | 490            | 570       | 16             |
| E5728   | 0.12 | 0.030         | 0.030   | 490            | 570       | 16             |

|           | Chem | ical composit | ion (%) | $Y_s$     | Us      | <sub>E</sub> լ |
|-----------|------|---------------|---------|-----------|---------|----------------|
| Grade     | С    | Р             | S       | (N/mm²)   | (N/mm²) | (%)            |
| E5010-p1  | 0.20 | 0.030         | 0.030   | 420       | 490     | 20             |
| E5510-P1  | 0.20 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5518-P2  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5545-P2  | 0.12 | 0.030         | 0.030   | 460 550   |         | 17             |
| E5003-1M3 | 0.12 | 0.030         | 0.030   | 400 490   |         | 20             |
| E5010-1M3 | 0.12 | 0.030         | 0.030   | 420       | 490     | 20             |
| E5011-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5015-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5016-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5018-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5019-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5020-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5027-1M3 | 0.12 | 0.030         | 0.030   | 400       | 490     | 20             |
| E5518-3M2 | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5515-3M3 | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5516-3M3 | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5518-3M3 | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5015-N1  | 0.12 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5016-N1  | 0.12 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5028-N1  | 0.12 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5515-N1  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5516-N1  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5528-N1  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5015-N2  | 0.08 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5016-N2  | 0.08 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5018-N2  | 0.08 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5515-N2  | 0.12 | 0.030         | 0.030   | 470 ~ 550 | 550     | 20             |
| E5516-N2  | 0.12 | 0.030         | 0.030   | 470 ~ 550 | 550     | 20             |
| E5518-N2  | 0.12 | 0.030         | 0.030   | 470 ~ 550 | 550     | 20             |
| E5015-N3  | 0.10 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5016-N3  | 0.10 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5515-N3  | 0.10 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5516-N3  | 0.10 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5516-3N3 | 0.10 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5518-N3  | 0.10 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5015-N5  | 0.05 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5016-N5  | 0.05 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5018-N5  | 0.05 | 0.030         | 0.030   | 390       | 490     | 20             |
| E5028-N5  | 0.10 | 0.025         | 0.020   | 390       | 490     | 20             |
| E5515-N5  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5516-N5  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |
| E5518-N5  | 0.12 | 0.030         | 0.030   | 460       | 550     | 17             |

| Condo      | Chem | ical composit | ion (%)           | Ys      | Us      |     |
|------------|------|---------------|-------------------|---------|---------|-----|
| Grade      | С    | Р             | S                 | (N/mm²) | (N/mm²) | (%) |
| E5015-N7   | 0.05 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5016-N7   | 0.05 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5018-N7   | 0.05 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5515-N7   | 0.12 | 0.030         | 0.030             | 460 550 |         | 17  |
| E5516-N7   | 0.12 | 0.030         | 0.030             | 460     | 550     | 17  |
| E5518-N7   | 0.12 | 0.030         | 0.030             | 460     | 550     | 17  |
| E5515-N13  | 0.06 | 0.025         | 0.020             | 460     | 550     | 17  |
| E5516-N13  | 0.06 | 0.025         | 0.020             | 460     | 550     | 17  |
| E5518-N2M3 | 0.10 | 0.020         | 0.020 0.020 460 5 |         | 550     | 17  |
| E5003-NC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5016-NC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5028-NC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5716-NC   | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5728-NC   | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5003-CC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5016-CC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5028-CC   | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5716-CC   | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5728-CC   | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5003-NCC  | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5016-NCC  | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5028-NCC  | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5716-NCC  | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5728-NCC  | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5003-NCC1 | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5016-NCC1 | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5028-NCC1 | 0.12 | 0.030         | 0.030             | 390     | 490     | 20  |
| E5516-NCC1 | 0.12 | 0.030         | 0.030             | 460     | 550     | 17  |
| E5518-NCC1 | 0.12 | 0.030         | 0.030             | 460     | 550     | 17  |
| E5716-NCC1 | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5728-NCC1 | 0.12 | 0.030         | 0.030             | 490     | 570     | 16  |
| E5016-NCC2 | 0.12 | 0.025         | 0.025             | 420     | 490     | 20  |
| E5018-NCC2 | 0.12 | 0.025         | 0.025             | 420     | 490     | 20  |
| E50XX-G*   | ۸    | ۸             | ۸                 | 400     | 490     | 20  |
| E55XX-G*   | ۸    | ۸             | ۸                 | 460     | 550     | 17  |
| E57X-G*    | ۸    | ۸             | ۸                 | 490     | 570     | 16  |

<sup>^</sup> To be specified by the purchaser.
\* "XX" denotes the type of electrode's cover.

Covered electrodes for manual metal arc welding of creep-resisting GB/T 5118-2012: steels

| Cup do *     | Chem        | ical composit | ion (%) | Y <sub>s</sub> | Us      | £ <sub>L</sub> |
|--------------|-------------|---------------|---------|----------------|---------|----------------|
| Grade*       | С           | Р             | S       | (N/mm²)        | (N/mm²) | (%)            |
| E50XX-1M3    | 0.12        | 0.030         | 0.030   | 390            | 490     | 22             |
| E50YY-1M3    | 0.12        | 0.030         | 0.030   | 390            | 490     | 20             |
| E55XX-CM     | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 17             |
| E5540-CM     | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 14             |
| E5503-CM     | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 14             |
| E55XX-C1M    | 0.07 ~ 0.15 | 0.030         | 0.030   | 460            | 550     | 17             |
| E55XX-1CM    | 0.05 ~ 012  | 0.030         | 0.030   | 460            | 550     | 17             |
| E5513-1CM    | 0.05 ~ 012  | 0.030         | 0.030   | 460            | 550     | 14             |
| E52XX-1CML   | 0.05        | 0.030         | 0.030   | 390            | 520     | 17             |
| E5540-1CMV   | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 14             |
| E5515-1CMV   | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 15             |
| E5515-1CMVNb | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 15             |
| E5515-1CMWV  | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 15             |
| E62XX-2C1M   | 0.05 ~ 0.12 | 0.030         | 0.030   | 530            | 620     | 15             |
| E6240-2C1M   | 0.05 ~ 0.12 | 0.030         | 0.030   | 530            | 620     | 12             |
| E6213-2C1M   | 0.05 ~ 0.12 | 0.030         | 0.030   | 530            | 620     | 12             |
| E55XX-2C1ML  | 0.05        | 0.030         | 0.030   | 460            | 550     | 15             |
| E55XX-2CML   | 0.05        | 0.030         | 0.030   | 460            | 550     | 15             |
| E5540-2CMWVB | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 14             |
| E5515-2CMWVB | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 15             |
| E5515-2CMVNb | 0.05 ~ 0.12 | 0.030         | 0.030   | 460            | 550     | 15             |
| E62XX-2C1MV  | 0.05 ~ 0.15 | 0.030         | 0.030   | 530            | 620     | 15             |
| E62XX-3C1MV  | 0.05 ~ 0.15 | 0.030         | 0.030   | 530            | 620     | 15             |
| E55XX-5CM    | 0.05 ~ 0.10 | 0.030         | 0.030   | 460            | 550     | 17             |
| E55XX-5CML   | 0.05        | 0.030         | 0.030   | 460            | 550     | 17             |
| E55XX-5CMV   | 0.12        | 0.030         | 0.030   | 460            | 550     | 14             |
| E55XX-7CM    | 0.05 ~ 0.10 | 0.030         | 0.030   | 460            | 550     | 17             |
| E55XX-7CML   | 0.05        | 0.030         | 0.030   | 460            | 550     | 17             |
| E62XX-9C1M   | 0.05 ~ 0.10 | 0.030         | 0.030   | 530            | 620     | 15             |
| E62XX-9C1ML  | 0.05        | 0.030         | 0.030   | 530            | 620     | 15             |
| E62XX-9C1MV  | 0.08 ~ 0.13 | 0.010         | 0.01    | 530            | 620     | 15             |
| E62XX-9C1MV1 | 0.03 ~ 0.12 | 0.025         | 0.025   | 530            | 620     | 15             |

<sup>^</sup> To be specified by the purchaser.
\* "XX" denotes Type 15, 16 or 18 of electrode's cover, while "YY" denotes Type 10, 11, 19, 20 or 27.

#### A.6 Acceptable Russian steel materials

## A.6.1 Acceptable Russian structural steel: plates

GOST 27772-2015 - Rolled products for steel structural elements. General specifications

| Cuada    | Thickness     | Chemic | al composit | tion (%) | Max. | Y <sub>s</sub> | Us      | ε <sub>L</sub> | Impact                       |  |
|----------|---------------|--------|-------------|----------|------|----------------|---------|----------------|------------------------------|--|
| Grade    | (mm)          | С      | Р           | S        | (%)  | (N/mm²)        | (N/mm²) | (%)            | Toughness<br>(J)             |  |
| C245     | 4 ≤ t ≤ 30    | 0.22   | 0.040       | 0.025    | ^    | 235            | 370     | 24             | ≥34J @ 0°C                   |  |
|          | 4 ≤ t ≤ 10    |        |             |          |      | 245            | 380     | 25             |                              |  |
| C255     | 10 < t ≤ 20   | 0.17   | 0.035       | 0.025    | ^    | 245            | 370     | 25             | ≥34J @ 0°C                   |  |
|          | 20 ≤ t ≤ 40   |        |             |          |      | 235            | 370     | 25             | ≥34J @ -20°C                 |  |
|          | 4≤ t ≤ 10     |        |             |          |      | 345            | 490     | 21             |                              |  |
|          | 10 < t ≤ 20   |        |             |          |      | 325            | 470     | 21             |                              |  |
| 02.45    | 20 < t ≤ 40   | 0.45   | 0.000       | 0.005    | 0.45 | 305            | 460     | 21             | ≥34J @ -20°C                 |  |
| C345     | 40 < t ≤ 60   | 0.15   | 0.030       | 0.025    | 0.45 | 285            | 450     | 21             | ≥34J @ -40°C                 |  |
|          | 60 < t ≤ 80   |        |             |          |      | 275            | 440     | 21             |                              |  |
|          | 80 < t ≤ 160  |        |             |          |      | 265            | 430     | 21             |                              |  |
|          | 8 ≤ t ≤ 16    |        |             |          |      | 355            | 470     | 21             |                              |  |
|          | 16 < t ≤ 40   |        |             |          | ]    | 345            | 470     | 21             |                              |  |
| 6255     | 40 < t ≤ 60   | 0.44   | 0.025       | 0.035    | 0.45 | 335            | 470     | 21             | ≥34J @ -20°C                 |  |
| C355     | 60 < t ≤ 80   | 0.14   | 0.025       | 0.025    | 0.45 | 325            | 460     | 21             | ≥34J @ -40°C                 |  |
|          | 80 < t ≤ 100  |        |             |          |      |                | 315     | 460            | 21                           |  |
|          | 100 < t ≤ 160 |        |             |          |      | 295            | 460     | 21             |                              |  |
|          | 8 ≤ t ≤ 16    |        |             |          |      | 355            | 470     | 21             | . 24. 6. 22%                 |  |
| C355-1   | 16 < t ≤ 40   | 0.15   | 0.017       | 0.015    | 0.45 | 345            | 470     | 21             | ≥34J @ -20°C                 |  |
|          | 40 < t ≤ 50   |        |             |          |      | 335            | 470     | 21             | ≥34J @ -40°C                 |  |
|          | 8 ≤ t ≤ 16    |        |             |          |      | 355            | 470     | 21             | 200                          |  |
| C355K    | 16 < t ≤ 40   | 0.15   | 0.020       | 0.015    | 0.45 | 345            | 470     | 21             | ≥34J @ -20°C                 |  |
|          | 40 < t ≤ 50   |        |             |          |      | 335            | 470     | 21             | ≥34J @ -40°C                 |  |
| С355П    | 8 ≤ t ≤ 16    | 0.10   | 0.020       | 0.015    | 0.45 | 355            | 470     | 21             | ≥34J @ -20°C                 |  |
| C35511   | 16 < t ≤ 40   | 0.10   | 0.020       | 0.015    | 0.45 | 345            | 470     | 21             | ≥34J @ -40°C                 |  |
| C390     | 8 ≤ t ≤ 50    | 0.12   | 0.017       | 0.010    | 0.46 | 390            | 520     | 20             | ≥34J @ -40°C                 |  |
| (C390-1) |               |        |             |          |      |                |         |                | ≥34J @ -60°C                 |  |
| C440     | 8 ≤ t ≤ 50    | 0.12   | 0.017       | 0.010    | 0.46 | 440            | 540     | 20             | ≥66J @ -40°C<br>≥66J @ -60°C |  |
| C550     | 8 ≤ t ≤ 50    | 0.10   | 0.015       | 0.007    | 0.47 | 540            | 640     | 17             | ≥66J @ -40°C<br>≥66J @ -60°C |  |
| C590     | 8 ≤ t ≤ 40    | 0.10   | 0.015       | 0.004    | 0.51 | 590            | 685     | 14             | ≥66J @ -40°C<br>≥66J @ -60°C |  |

<sup>^</sup> To be specified by the purchaser.

Note: letter "C" - "Structure Steel"; figure "1" – another option of chemical composition; letter "K" - the steel of improved corrosion resistance; letter "Π" - the steel of improved fire resistance.

GOST 14637-89 - Rolled plate from carbon steel of general quality. Specifications

| Grade           | Thickness     | Chemical co | mpositio | n (%) | Max.<br>CEV | Ys      | Us      | $\epsilon_{L}$ | Impact<br>Toughness       |  |
|-----------------|---------------|-------------|----------|-------|-------------|---------|---------|----------------|---------------------------|--|
| Grade           | (mm)          | С           | P**      | S**   | (%)         | (N/mm²) | (N/mm²) | (%)            | (J)                       |  |
|                 | 5 ≤ t ≤ 20    |             |          |       |             | 235     |         | 27             |                           |  |
| Ст3кп           | 20 < t ≤ 40   | 0.14~0.22   | 0.040    | 0.050 | ٨           | 225     | 360~460 | 26             | ٨                         |  |
| CISKII          | 40 < t ≤ 100  | 0.14 0.22   | 0.040    | 0.050 | ,           | 215     | 300 400 | 24             | ^                         |  |
|                 | 100 < t ≤ 160 |             |          |       |             | 195     |         | 24             |                           |  |
|                 | 5 ≤ t ≤ 20    |             |          |       |             | 245     |         | 26             | ≥34J @ 20°C<br>≥30J @ 0°C |  |
| Ст3пс,<br>Ст3сп | 20 < t ≤ 40   | 0.14~0.22   | 0.040    | 0.050 | ۸           | 235     | 370~480 | 25             |                           |  |
| Ciscii          | 40 < t ≤ 100  |             |          |       |             | 225     |         | 23             | ^                         |  |
|                 | 100 < t ≤ 160 |             |          |       |             | 205     |         | 23             |                           |  |
|                 | 5 ≤ t ≤20     |             |          |       |             | 245     |         | 26             | ≥34J @ 20°C               |  |
|                 | 3 S t S20     |             |          |       | ٨           | 245     |         | 20             | ≥30J @ 0°C                |  |
| Ст3Гпс          | 20 < t ≤ 40   | 0.14~0.22   | 0.040    | 0.050 | Α           | 235     | 370~490 | 25             |                           |  |
|                 | 40 < t ≤ 100  |             |          |       |             | 225     |         | 23             | ^                         |  |
|                 | 100 < t ≤ 160 |             |          |       |             | 205     |         | 23             |                           |  |
|                 | 5 ≤ t ≤20     |             |          |       |             | 255     |         | 23             | ≥34J @ 20°C               |  |
| Ст3Гсп          |               | 0.14~0.20   | 0.040    | 0.050 | ۸           |         | 390~570 |                | ≥30J @ 0°C                |  |
|                 | 20 < t ≤ 40   |             |          |       |             | 245     |         | 24             | ۸                         |  |
|                 | 5 ≤ t ≤ 20    |             |          |       |             | 265     |         | 24             |                           |  |
| Ст4пс,<br>Ст4сп | 20 < t ≤ 40   | 0.18~0.27*  | 0.040    | 0.050 | ۸           | 255     | 410~530 | 23             | ^                         |  |
| CI4CII          | 40 < t ≤ 100  |             |          |       |             | 245     |         | 21             |                           |  |
|                 | 100 < t ≤ 160 |             |          |       |             | 235     |         | 21             |                           |  |
|                 | 5 ≤ t ≤20     |             |          | l     |             | 285     |         | 20             |                           |  |
| Ст5Гпс          | 20 < t ≤ 40   | 0.22~0.30*  | 0.040    | 0.050 | ^           | 275     | 450~590 | 19             | ^                         |  |
|                 | 40 < t ≤ 100  |             |          |       |             | 265     |         | 17             |                           |  |
| To be see       | 100 < t ≤ 160 |             |          |       |             | 255     |         | 17             |                           |  |

<sup>^</sup> To be specified by the purchaser.

Note: letter "Cτ" - "Steel"; letter "Γ" - the mass fraction of manganese in steel is not less than 0.80 %; letters "κπ", "πc", "cn" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively.

#### GOST 19281-2014 - High strength rolled steel. General specification

| Grade | Thickness | Chemical composition (%) |       |       | Max.       | Y <sub>s</sub>  | Us  | ει              | Impact                                                                               |                 |  |                 |  |     |                  |
|-------|-----------|--------------------------|-------|-------|------------|-----------------|-----|-----------------|--------------------------------------------------------------------------------------|-----------------|--|-----------------|--|-----|------------------|
| Grade | (mm)      | С                        | Р     | S     | CEV<br>(%) | (N/mm²) (N/mm²) |     | (N/mm²) (N/mm²) |                                                                                      | (N/mm²) (N/mm²) |  | (N/mm²) (N/mm²) |  | (%) | Toughness<br>(J) |
| 265   | t ≤ 160   | 0.14                     | 0.030 | 0.035 | 0.43       | 265             | 430 | 21              | ≥34J @ 0°C and ≥29J @-20°C for t ≤ 20mm                                              |                 |  |                 |  |     |                  |
| 295   | t ≤ 100   | 0.14                     | 0.030 | 0.035 | 0.43       | 295             | 430 | 21              | ≥34J @ 0°C, ≥29J @-20°C                                                              |                 |  |                 |  |     |                  |
| 315   | t ≤ 60    | 0.18                     | 0.030 | 0.035 | 0.43       | 315             | 450 | 21              | ≥34J @ 0°C, ≥29J @-20°C                                                              |                 |  |                 |  |     |                  |
| 325   | t ≤ 60    | 0.22                     | 0.030 | 0.035 | 0.43       | 325             | 450 | 21              | ≥34J @ 0°C, ≥29J @-20°C                                                              |                 |  |                 |  |     |                  |
| 345   | t≤50      | 0.22                     | 0.030 | 0.035 | 0.46       | 345             | 490 | 21              | ≥34J @ -20°C for t≤12mm,<br>≥39J @ 0°C & -20°C for<br>12mm <t≤50mm< td=""></t≤50mm<> |                 |  |                 |  |     |                  |

<sup>\*</sup> The mass fraction of carbon for welded structures must not exceed 0.22%.

<sup>\*\*</sup> At the request of the customer, the mass fraction shall not exceed 0.040% for sulfur and 0.030% for phosphorus in rolled steel of categories 1 to 5, and each of these elements shall not exceed 0.025% in rolled steel of category 6.

| Cuada | Thickness | Chemical | composit | ion (%) | Max.       | Y <sub>s</sub>       | Us      | εL  | Impact                                                                                                                                                  |
|-------|-----------|----------|----------|---------|------------|----------------------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade | (mm)      | С        | Р        | S       | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²) | (%) | Toughness<br>(J)                                                                                                                                        |
| 355   | t ≤ 50    | 0.22     | 0.030    | 0.035   | 0.46       | 355                  | 490     | 20  | ≥34J @ 0°C, ≥29J @-20°C                                                                                                                                 |
| 375   | t ≤ 50    | 0.22     | 0.030    | 0.035   | 0.46       | 375                  | 510     | 20  | ≥29J @-20°C                                                                                                                                             |
| 390   | t ≤ 50    | 0.22     | 0.030    | 0.035   | 0.48       | 390                  | 510     | 19  | ≥29J @ -20°C for t≤10mm,<br>≥39J @ 0°C & ≥29J @ -20°C<br>for 10mm <t≤15mm,<br>≥39J @ 0°C &amp; -20°C for<br/>15mm<t≤50mm< td=""></t≤50mm<></t≤15mm,<br> |
| 440   | t ≤50     | 0.22     | 0.030    | 0.035   | 0.51       | 440                  | 590     | 19  | ≥29J @-20°C                                                                                                                                             |
| 460   | t ≤ 50    | 0.12     | 0.030    | 0.035   | 0.47       | 460                  | 540~720 | 17  | ≥29J @-20°C                                                                                                                                             |

# GOST 11269-76: Alloyed universal structural high-grade rolled steel plates and wide strips for special purposes. Specifications

| Cuada     | Thickness  | Chemical  | compositi | on (%) | Max.       | Ϋ́s     | Us      | ε <sub>L</sub> | Impact           |
|-----------|------------|-----------|-----------|--------|------------|---------|---------|----------------|------------------|
| Grade     | (mm)       | С         | Р         | S      | CEV<br>(%) | (N/mm²) | (N/mm²) | (%)            | toughness<br>(J) |
| 25ХГСА    | 4 < t ≤ 60 | 0.22-0.28 | 0.0250    | 0.0250 | ^          | ٨       | 490-690 | 21             | ٨                |
| 12Х2НМФА  |            |           |           |        |            |         |         |                |                  |
| 12Х2НВФА  | 4 < t ≤ 60 | 0.00.0.16 | 0.0250    | 0.0250 | ^          | ۸       | 490-740 | 15             | ٨                |
| 12Х2НМ1ФА | 4 < 1 ≤ 00 | 0.09-0.16 | 0.0250    | 0.0230 | ,          | ^       | 490-740 | 13             | ^                |
| 12Х2НВФМА |            |           |           |        |            |         |         |                |                  |
| 19Х2НМФА  | 4 < t ≤ 60 | 0.16-0.23 | 0.0250    | 0.0250 | ^          | ۸       | 490-740 | 18             | ٨                |
| 19Х2НВФА  | 4 < 1 ≥ 00 | 0.10-0.25 | 0.0230    | 0.0230 | , ,        | ,,      | 490-740 | 10             |                  |
| 21Х2НМФА  | 4 < t ≤ 60 | 0.19-0.23 | 0.0250    | 0.0250 | ^          | ۸       | 490-740 | 15             | ٨                |
| 21Х2НВФА  | 4 < 1 > 00 | 0.15-0.25 | 0.0230    | 0.0230 | ,          | .,      | 450-740 | 15             | .,               |
| 23Х2НМФА  | 4 < t ≤ 60 | 0.19-0.26 | 0.0250    | 0.0250 | ^          | ۸       | 490-780 | 17             | ٨                |
| 23Х2НВФА  | 4 < 1 ≥ 00 | 0.13-0.20 | 0.0250    | 0.0250 | ,          | ,       | 430-780 | 1/             | .,               |

<sup>^</sup> To be specified by the purchaser.

Note: the first two figures - the average mass fraction of carbon (w(C)%  $\times$  100); letters "X", " $\Gamma$ ", "C", "M", " $\Phi$ ", "B", "H" – alloy element of Chromium, Manganese, Silicon, Molybdenum, Vanadium, Tungsten, Nickel; the figure after the letter - approximate mass fraction of allying elements in whole units, and its absence means the mass fraction of alloy element is up to 1.5%; letter "A" - high-quality steel.

#### GOST 1577-93 - Rolled sheets and wide strips of structural quality steel. Specifications

#### 1. In normalized condition

|       | -1                | Chemical  | on (%) | Max.  | <b>V</b>   |                           | εμ      | Impact                       |                               |                  |
|-------|-------------------|-----------|--------|-------|------------|---------------------------|---------|------------------------------|-------------------------------|------------------|
| Grade | Thickness<br>(mm) | С         | Р      | S     | CEV<br>(%) | Y <sub>s</sub><br>(N/mm²) | *       | along<br>rolled<br>direction | across<br>rolled<br>direction | toughness<br>(J) |
| 20    | 4 ≤ t ≤ 100       | 0.17~0.24 | 0.030  | 0.035 | _          | 230                       | 400~550 | 27                           | 25                            | ٨                |
| 20    | 100 < t ≤ 160     | 0.17 0.24 | 0.030  | 0.035 |            | 210                       | 380~520 | 25                           | 23                            | ۸                |

<sup>\*</sup> Steels in the table are in normalized condition.

#### 2. In heat-treated condition

| Grade | Thickness<br>(mm) | CEV (N/mm <sup>2</sup> ) |       | Y <sub>s</sub><br>(N/mm²) | U <sub>s</sub><br>(N/mm²) | ε <sub>ι</sub><br>(%) | Impact<br>toughness |    |        |
|-------|-------------------|--------------------------|-------|---------------------------|---------------------------|-----------------------|---------------------|----|--------|
|       |                   | C                        | Р     | 3                         | (%)                       |                       |                     |    | (1)    |
| 20    | 4 ≤ t ≤ 16        | 0.17~0.24                | 0.030 | 0.035                     | ۸                         | 350                   | 550 - 700           | 20 | ≥50J @ |
| 20    | 16 < t ≤ 40       | 0.17 0.24                | 0.030 | 0.035                     | ,                         | 300                   | 500 - 650           | 22 | 20℃    |

<sup>^</sup> To be specified by the purchaser.

Note: the two figures - the average mass fraction of carbon (w(C)%  $\times$  100).

with dimensional and/or mass tolerances in accordance with:

GOST 19903-2015

#### A.6.2 Acceptable Russian structural steel: sections

GOST 27772-2015 - Rolled products for steel structural elements. General specifications

| Grade  | Thickness   | Chemica | al composit | tion (%) | Max.<br>CEV | Ys      | Us      | ει  | Impact         |
|--------|-------------|---------|-------------|----------|-------------|---------|---------|-----|----------------|
| Grade  | (mm)        | С       | Р           | S        | (%)         | (N/mm²) | (N/mm²) | (%) | toughness (J)  |
| C245   | 4 ≤ t ≤ 20  | 0.22    | 0.040       | 0.025    | ۸           | 245     | 370     | 25  | >241 @ 0°C     |
| C245   | 20 < t ≤ 40 | 0.22    | 0.040       | 0.025    | ,           | 235     | 370     | 24  | ≥34J @ 0°C     |
|        | 4 ≤ t ≤ 10  |         |             |          |             | 255     | 380     | 25  |                |
| C255   | 10 < t ≤ 20 | 0.17    | 0.035       | 0.025    | ^           | 245     | 370     | 25  | ≥34J @ -20°C   |
|        | 20 < t ≤ 40 |         |             |          |             | 235     | 370     | 24  |                |
|        | 4 ≤ t ≤ 10  |         |             |          |             | 345     | 480     | 21  |                |
| C345   | 10 < t ≤ 20 | 0.15    | 0.030       | 0.025    | 0.45        | 325     | 470     | 21  | ^              |
|        | 20 < t ≤ 40 |         |             |          |             | 305     | 460     | 21  |                |
|        |             |         |             |          |             |         |         |     |                |
| C355   | 8 ≤ t ≤ 16  | 0.14    | 0.025       | 0.025    | 0.45        | 355     | 470     | 21  | >241 G 20°C    |
| C355   | 16 < t ≤ 40 | 0.14    | 0.025       | 0.025    | 0.45        | 345     | 470     | 21  | ≥34J @ -20°C   |
| C355-1 | 8 ≤ t ≤ 16  | 0.15    | 0.02        | 0.02     | 0.45        | 355     | 480     | 21  | >241 G 20°C    |
| C333-1 | 16 < t ≤ 40 | 0.15    | 0.02        | 0.02     | 0.45        | 345     | 480     | 21  | ≥34J @ -20°C   |
|        | 8 ≤ t ≤ 10  |         |             |          |             | 390     | 520     | 20  | >241 C 20°C    |
| C390   | 10 < t ≤ 20 | 0.12    | 0.017       | 0.010    | 0.46        | 380     | 500     | 20  | ≥34J @ -20°C   |
|        | 20 < t ≤ 40 |         | 0.017       | 0.010    | 0.10        | 370     | 490     | 20  | — ≥34J @ -40°C |

<sup>^</sup> To be specified by the purchaser.

Note: letter "C" - "Structure Steel"; figure "1" - the option of chemical composition; "K" - the steel of improved corrosion resistance.

OST 19281-2014 - High strength rolled steel. General specification

| Grade | Thickness    | Chemic | al composi | tion (%) | Max.<br>CEV | Y <sub>s</sub>       | Us      | εL  | Impact<br>Toughness |
|-------|--------------|--------|------------|----------|-------------|----------------------|---------|-----|---------------------|
| Grade | (mm)         | С      | Р          | S        | (%)         | (N/mm <sup>2</sup> ) | (N/mm²) | (%) | (J)                 |
| 265   | t ≤ 100      | 0.14   | 0.030      | 0.035    | 0.43        | 265                  | 430     | 21  | ۸                   |
| 295   | t ≤ 100      | 0.14   | 0.030      | 0.035    | 0.43        | 295                  | 430     | 21  | ۸                   |
| 315   | t ≤ 140      | 0.18   | 0.030      | 0.035    | 0.43        | 315                  | 440     | 21  | ۸                   |
| 325   | t ≤ 60       | 0.22   | 0.030      | 0.035    | 0.43        | 325                  | 450     | 21  | ≥34J @ 0°C & -20°C  |
| 525   | 1 - 00       | 0.22   | 0.000      | 0.000    | 01.10       | 020                  | .50     |     | for t≤20mm          |
| 345   | t ≤ 20       | 0.22   | 0.030      | 0.035    | 0.46        | 345                  | 480     | 21  | ≥39J @ 0°C & -20°C  |
| 343   | 20 < t ≤ 140 | 0.22   | 0.030      | 0.033    | 0.40        | 343                  | 400     | 21  | for t≤10mm          |
| 355   | t ≤ 140      | 0.22   | 0.030      | 0.035    | 0.46        | 355                  | 480     | 21  | ۸                   |
| 275   | t ≤ 20       | 0.22   | 0.030      | 0.035    | 0.46        | 375                  | 510     | 21  | ۸                   |
| 375   | 20 < t ≤ 50  | 0.22   | 0.030      | 0.035    | 0.46        | 3/3                  | 210     | 21  | ^                   |
| 200   | t ≤ 20       | 0.22   | 0.030      | 0.035    | 0.48        | 200                  | F20     | 19  | ۸                   |
| 390   | 20 < t ≤ 50  | 0.22   | 0.030      | 0.035    | 0.48        | 390                  | 530     | 19  | ,                   |
| 440   | t ≤ 16       | 0.22   | 0.030      | 0.035    | 0.51        | 440                  | 590     | 19  | ۸                   |

<sup>^</sup> To be specified by the purchaser.

GOST 535-2005 - Common quality carbon steel bar and shaped sections. General specifications

| Grade  | Thickness    | Chemical co  | mpositio | n (%) | Max.<br>CEV | Ys                   | Us      |     | Impact<br>toughness |  |
|--------|--------------|--------------|----------|-------|-------------|----------------------|---------|-----|---------------------|--|
| Grade  | (mm)         | С            | Р        | S     | (%)         | (N/mm <sup>2</sup> ) | (N/mm²) | (%) | (J)                 |  |
|        | t ≤ 10       |              |          |       |             | 235                  |         | 27  |                     |  |
| C=2=   | 10 < t ≤ 20  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 235                  | 2602460 | 27  | ٨                   |  |
| Ст3кп  | 20 < t ≤ 40  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 225                  | 360~460 | 26  | ^                   |  |
|        | 40 < t ≤ 100 |              |          |       |             | 215                  |         | 24  |                     |  |
|        | t ≤ 10       |              |          |       |             | 245                  |         | 26  |                     |  |
| Ст3пс  | 10 < t ≤ 20  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 245                  | 370~480 | 26  | ≥34J @ +20°C        |  |
| CISIIC | 20 < t ≤ 40  | 0.14 0.22    | 0.040    | 0.050 | 0.45        | 235                  | 370 480 | 25  | for t≤26mm          |  |
|        | 40 < t ≤ 100 |              |          |       |             | 225                  |         | 23  |                     |  |
|        | t ≤ 10       |              |          |       |             | 255                  | 380~490 | 26  |                     |  |
| C=20=  | 10 < t ≤ 20  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 245                  |         | 26  | ≥34J @ +20°C        |  |
| Ст3сп  | 20 < t ≤ 40  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 235                  | 370~480 | 25  | for t≤26mm          |  |
|        | 40 < t ≤ 100 |              |          |       |             | 225                  |         | 23  |                     |  |
|        | t ≤ 10       |              |          |       |             | ۸                    |         | 26  |                     |  |
| C-25   | 10 < t ≤ 20  | 0.14~0.22    | 0.040    | 0.050 | 0.45        | 245                  | 370~490 | 26  | ≥34J @ +20°C        |  |
| Ст3Гпс | 20 < t ≤ 40  | 0.14~0.22    |          |       |             | 235                  | 370 490 | 25  | for t≤26mm          |  |
|        | 40 < t ≤ 100 |              |          |       |             | 225                  |         | 23  |                     |  |
| C=25== | t ≤ 20       | 0.1420.30    | 0.040    | 0.050 | 0.45        | ۸                    | 200%570 | ۸   | ≥34J @ +20°C        |  |
| Ст3Гсп | 20 < t ≤ 40  | 0.14~0.20    | 0.040    | 0.050 | 0.45        | 245                  | 390~570 | 24  | for t≤26mm          |  |
|        | t ≤ 10       |              |          |       |             | 255                  |         | 25  |                     |  |
| C=4=   | 10 < t ≤ 20  | 0.40~0.37    | 0.040    | 0.050 | 0.45        | 255                  | 400×F10 | 25  | ٨                   |  |
| Ст4кп  | 20 < t ≤ 40  | 0.18~0.27    | 0.040    | 0.050 | 0.45        | 245                  | 400~510 | 24  | ^                   |  |
|        | 40 < t ≤ 100 |              |          |       |             | 235                  |         | 22  |                     |  |
|        | t ≤ 10       |              |          |       |             | 265                  |         | 24  |                     |  |
| Ст4пс, | 10 < t ≤ 20  | 0.18~0.27*   | 0.040    | 0.050 | 0.45        | 265                  | 410~F20 | 24  | ٨                   |  |
| Ст4сп  | 20 < t ≤ 40  | 0.18 0.27    | 0.040    | 0.050 | 0.45        | 255                  | 410~530 | 23  | ^                   |  |
|        | 40 < t ≤ 100 |              |          |       |             | 245                  |         | 21  |                     |  |
|        | t ≤ 10       |              |          |       |             | ۸                    | 450~590 | 20  |                     |  |
| C-55   | 10 < t ≤ 20  | 0.22~0.20*   | 0.040    | 0.050 | 0.45        | 285                  |         | 20  | ^                   |  |
| Ст5Гпс | 20 < t ≤ 40  | 0.22~0.30* 0 |          | 0.050 | 0.45        | 275                  |         | 19  |                     |  |
|        | 40 < t ≤ 100 |              |          |       |             | 265                  |         | 17  |                     |  |

<sup>^</sup> To be specified by the purchaser.

Note: letter "Cτ" - "Steel"; letter 'Γ" - the mass fraction of manganese in steel is not less than 0.80 %; letters "κπ", "πc", "cn" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively.

#### with dimensional and/or mass tolerances in accordance with:

GOST 8239-89, GOST 8240-97, GOST 8509-93, GOST 8510-86, GOST 26020-83

<sup>\*</sup> The mass fraction of carbon for welded structures must not exceed 0.22%.

#### A.6.3 Acceptable Russian structural steel: hollow sections

GOST 10705-80: Electrically welded steel tubes. Specifications

1. Base metal with heat treatment for hot-rolled pipe

| Grade        | Outer<br>diameter | Chemical  | compositi | on (%) | Max.<br>CEV | Y <sub>s</sub>       | Us      | εL  | Impact<br>toughness |
|--------------|-------------------|-----------|-----------|--------|-------------|----------------------|---------|-----|---------------------|
| Grade        | (mm)              | С         | Р         | S      | (%)         | (N/mm <sup>2</sup> ) | (N/mm²) | (%) | (J)                 |
| 20, 20пс     | 10 ≤ D ≤ 630      | 0.17-0.24 | 0.030     | 0.035  | ^           | 255                  | 412     | 22  | ۸                   |
| Ст4пс, Ст4кп | 10 ≤ D ≤ 630      | 0.18-0.27 | 0.040     | 0.050  | ۸           | 245                  | 412     | 21  | ^                   |
| Ст4сп        | 10 ≤ D ≤ 630      | 0.18-0.27 | 0.040     | 0.050  | ۸           | 255                  | 412     | 22  |                     |

#### 2. Base metal without heat treatment and heat-treated welded connection

| Grade  | Outer<br>diameter | Chemical co | ompositio | n (%) | Max.<br>CEV | Ys      | Us      | ει  | Impact<br>toughness |
|--------|-------------------|-------------|-----------|-------|-------------|---------|---------|-----|---------------------|
| Grade  | (mm)              | С           | Р         | S     | (%)         | (N/mm²) | (N/mm²) | (%) | (J)                 |
| 22510  | 60 < D ≤ 152      | 0.45.0.22   | 0.020     | 0.010 | ۸           | 225     | 490     | 15  | ٨                   |
| 22ГЮ — | 152 < D ≤ 630     | 0.15-0.22   | 0.020     | 0.010 |             | 344     | 490     | 15  | ٨                   |

<sup>^</sup> To be specified by the purchaser.

Note: letter  $^{''}$ CT" - "Steel"; letters " $\kappa$ n", " $\pi$ c", " $\kappa$ n" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively; the first two figures - the average mass fraction of carbon (w(C)% × 100); letters " $\Gamma$ ", " $\Theta$ " – alloying element of Manganese, Aluminum.

with dimensional and/or mass tolerances in accordance with:

GOST 10704-91

GOST 8731-74: Seamless hot-deformed steel pipes. Specifications

| Cuada | Thickness    | Chemical  | composition | on (%) | Max.       | Ys      | Us      | eL  | Impact           |
|-------|--------------|-----------|-------------|--------|------------|---------|---------|-----|------------------|
| Grade | (mm)         | С         | Р           | S      | CEV<br>(%) | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| 20    | 2.5 ≤ t ≤ 75 | 0.17-0.24 | 0.030       | 0.035  | ۸          | 245     | 412     | 21  | ٨                |
| 10Γ2  | 2.5 ≤ t ≤ 75 | 0.07-0.15 | 0.030       | 0.035  | ۸          | 265     | 421     | 21  | ٨                |
| 15XM  | 2.5 ≤ t ≤ 75 | 0.11-0.18 | 0.035       | 0.035  | ۸          | 225     | 431     | 21  | ٨                |
| 12XH2 | 2.5 ≤ t ≤ 75 | 0.09-0.16 | 0.035       | 0.035  | ۸          | 392     | 539     | 14  | ٨                |

<sup>^</sup> To be specified by the purchaser.

Note: the first two figures - the average mass fraction of carbon (w(C)% × 100); letters "X", "Γ", "M", "H" – alloy element of Chromium, Manganese, Molybdenum, Nickel; the figure after the letter - approximate mass fraction of allying elements in whole units, and its absence means the mass fraction of alloy element is up to 1.5%.

with dimensional and/or mass tolerances in accordance with:

GOST 8732-78, GOST 9576-75

GOST 30245-2003 - Steel bent closed welded square and rectangular section for building. Specifications

Sections in GOST 30245 must be made of steel sheet delivered in rolls according to GOST 19903, and the chemical and mechanical properties (thickness:  $4mm \le t \le 12mm$ ) should comply to standards listed below:

- 1. GOST 27772-2015 Rolled products for steel structural elements. General specifications Refer to **Section A.6.1**
- 2. GOST 14637-89 Rolled plate from carbon steel of general quality. Specifications Refer to Section A.6.1

<sup>\*</sup> The range of wall thickness is from 1 mm to 32mm.

- 3. GOST 1050-2013 Metal products from nonalloyed structural quality and special steels. General specification Grade 10 and Grade 15, Refer to **Section A.6.5**
- 4. GOST 19281-2014 High strength rolled steel. General specification Refer to Section A.6.1

with dimensional and/or mass tolerances in accordance with:

GOST 30245-2003

GOST R 54864-2016: Hot-deformed seamless steel pipes for the welded steel structures. Specifications

| Grade | Thickness    | Chemica | al compos | ition (%)          | Max.<br>CEV | Y <sub>s</sub>       | Us                   | εL  | Impact                     |    |                     |
|-------|--------------|---------|-----------|--------------------|-------------|----------------------|----------------------|-----|----------------------------|----|---------------------|
| Grade | (mm)         | С       | Р         | S                  | (%)         | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | toughness<br>(J)           |    |                     |
|       | 3.5 ≤ t ≤ 10 |         |           |                    | 0.42        | 275                  | 390                  | 24  |                            |    |                     |
| C275  | 10 < t ≤ 16  | 0.22    | 0.030     | 0.030              | 0.42        | 275                  | 380                  | 23  | ≥34J @ -20°C               |    |                     |
| C273  | 16 < t ≤ 20  | 0.22    | 0.030     | 0.030              | 0.43        | 275                  | 380                  | 23  | 234J @ -20 C               |    |                     |
|       | 20 < t ≤ 40  |         |           |                    | 0.43        | 255                  | 370                  | 21  |                            |    |                     |
|       | 3.5 ≤ t ≤ 10 |         |           |                    | 0.42        | 285                  | 400                  | 24  |                            |    |                     |
| C285  | 10 < t ≤ 16  | 0.22    | 0.030     | 0.030              | 0.42        | 275                  | 390                  | 23  | >241 € 20°C                |    |                     |
| C285  | 16 < t ≤ 20  | 0.22    | 0.030     | 0.030              | 0.43        | 275                  | 390                  | 23  | - ≥34J @ -20°C             |    |                     |
|       | 20 < t ≤ 40  |         |           |                    | 0.43        | 255                  | 380                  | 22  |                            |    |                     |
|       | 3.5 ≤ t ≤ 10 |         |           |                    | 0.44        | 345                  | 490                  |     |                            |    |                     |
| C345  | 10 < t ≤ 16  | 0.14    | 0.030     | 0.030              | 0.44        | 325                  | 470                  | 21  | ≥34J @ -20°C, -40°C        |    |                     |
| C345  | 16 < t ≤ 20  | 0.14    | 0.030     | 0.030              | 0.45        | 325                  | 470                  | 21  | 2341 @ -20 C, -40 C        |    |                     |
|       | 20 < t ≤ 40  |         |           |                    | 0.45        | 305                  | 460                  |     |                            |    |                     |
|       | 3.5 ≤ t ≤ 10 |         |           |                    | 0.44        | 375                  | 510                  |     |                            |    |                     |
| C375  | 10 < t ≤ 16  | 0.14    | 0.030     | 0.020              | 0.44        | 355                  | 490                  | 21  | ≥34J @ -20°C, -40°C        |    |                     |
| C3/3  | 16 < t ≤ 20  | 0.14    | 0.030     | 0 0.030 355 490 21 | 355 490     |                      |                      |     | 355 490                    | 21 | 2341 @ -20 C, -40 C |
|       | 20 < t ≤ 40  |         |           |                    | 0.45        | 355                  | 480                  |     |                            |    |                     |
| C390  | 3.5 ≤ t ≤ 16 | 0.12    | 0.025     | 0.030              | 0.45        | 390                  | 540                  | 20  | ≥34J @ -20°C, -40°C, -60°C |    |                     |
| C390  | 16 < t ≤ 40  | 0.12    | 0.025     | 0.030              | 0.46        | 390                  | 340                  | 20  | 234J @ -20 C, -40 C, -60 C |    |                     |
|       | 3.5 ≤ t ≤ 16 |         |           |                    | 0.45        | 440                  | 590                  |     |                            |    |                     |
| C440  | 16 < t ≤ 30  | 0.12    | 0.025     | 0.030              | 0.46        | 440                  | 590                  | 20  | ≥34J @ -40°C, -60°C        |    |                     |
|       | 30 < t ≤ 40  |         |           |                    | 0.40        | 410                  | 570                  |     |                            |    |                     |

<sup>^</sup> To be specified by the purchaser.

with dimensional and/or mass tolerances in accordance with:

GOST 32528-2013

<sup>\*</sup> At the request of the customer, the mass fraction shall not exceed 0.010% for sulfur and 0.015% for phosphorus.

<sup>\*\*</sup> For grade C390 and C440, the total mass fraction of sulfur and phosphorus shall not exceed 0.020% (S+P<0.020%). Note: letter "C" - "Construction".

#### A.6.4 Acceptable Russian structural steel: sheet piles

GOST 4781-85: Hot-rolled steel shapes for sheet piles. Specifications

| Cuada | Thickness            | Chemical co | ompositi | on (%) | Max        | Ys                   | Us      | ει  | Impact                     |
|-------|----------------------|-------------|----------|--------|------------|----------------------|---------|-----|----------------------------|
| Grade | (mm)                 | С           | Р        | S      | CEV<br>(%) | (N/mm <sup>2</sup> ) | (N/mm²) | (%) | toughness<br>(J)           |
| Ст3пс | t = 10               | 0.14~0.22   | 0.040    | 0.050  | 0.45       | 245                  | 370~480 | 26  | ≥34J @ +20°C for<br>t≤26mm |
|       |                      |             |          |        |            |                      |         |     | ≥34J @ +20°C for           |
| Ст3сп | t =10 0.14~0.22 0.04 |             | 0.040    | 0.050  | 0.45       | 255                  | 380~490 | 26  | t≤26mm                     |

#### GOST R 53629-2009: Sheet piles of steel cold-formed sections. Specifications

| Grade        | Thickness     | Chemical  | composit | ion (%) | Max.<br>CEV | Y <sub>s</sub> | Us      | εL  | Impact           |
|--------------|---------------|-----------|----------|---------|-------------|----------------|---------|-----|------------------|
| Grade        | (mm)          | С         | Р        | S       | (%)         | (N/mm²)        | (N/mm²) | (%) | toughness<br>(J) |
| 09Г2         | t =12, 16, 20 | 0.12      | 0.030    | 0.035   | 0.43        | 305            | 440     | 21  | ٨                |
| 325          | t =12, 16, 20 | 0.22      | 0.030    | 0.035   | 0.43        | 325            | 450     | 21  | ۸                |
| Ст3сп5       | t =12, 16, 20 | 0.14-0.20 | 0.030    | 0.040   | ^           | 245            | 370~490 | 26  | ≥34J @ 20°C      |
| CISCIS       | ( =12, 10, 20 | 0.14-0.20 | 0.030    | 0.040   |             | 243            | 370 430 | 20  | ≥30J @ 0°C       |
| Ст3Гпс5      | t =12, 16, 20 | 0,14-0,22 | 0,030    | 0,040   | ^           | 255            | 390~570 | 23  | ≥34J @ 20°C,     |
| CISTICS      | 1 –12, 16, 20 | 0,14-0,22 | 0,030    | 0,040   |             | 255            | 390 370 | 23  | ≥30J @ 0°C       |
| 20сп, 20пс   | t =12, 16, 20 | 0,17-0,24 | 0,030    | 0,035   | ۸           | 245            | 410     | 25  | ۸                |
| 20Асп, 20Апс | t =12, 16, 20 | 0,17-0,24 | 0.025    | 0.025   | ^           | 245            | 410     | 25  | ۸                |

<sup>^</sup> To be specified by the purchaser.

Note: letter "Cτ" - "Steel"; letters "κπ", "nc", "cn" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively; letter "Γ" – alloying element of Manganese; letter "A" - high-quality steel.

with dimensional and/or mass tolerances in accordance with:

GOST 4781-85, GOST R 53629-2009

#### A.6.5 Acceptable Russian structural steel: solid bars

GOST 535-2005 - Common quality carbon steel bar and shaped sections. General specifications – Refer to **Section A.6.2** 

GOST 19281-2014 - High strength rolled steel. General specification - Refer to Section A.6.2

GOST 1050-2013: Metal products from nonalloyed structural quality and special steels. General specification

#### 1. In normalized condition

| Grade     | Chemical  | compositio | n (%) | Max<br>CEV | Ys      | Us      | εμ  | Impact<br>toughness |
|-----------|-----------|------------|-------|------------|---------|---------|-----|---------------------|
| Grade     | С         | Р          | S     | (%)        | (N/mm²) | (N/mm²) | (%) | (J)                 |
| 20        | 0,17-0,24 | 0,030      | 0,035 | ^          | 245     | 410     | 25  | ٨                   |
| 25        | 0,22-0,30 | 0,030      | 0,035 | ^          | 275     | 450     | 23  | ۸                   |
| 30        | 0,27-0,35 | 0,030      | 0,035 | ^          | 295     | 490     | 21  | ۸                   |
| 35        | 0,32-0,40 | 0,030      | 0,035 | ^          | 315     | 530     | 20  | ۸                   |
| 40        | 0,37-0,45 | 0,030      | 0,035 | ^          | 335     | 570     | 19  | ۸                   |
| 45        | 0,42-0,50 | 0,030      | 0,035 | ^          | 355     | 600     | 16  | ۸                   |
| 50        | 0,47-0,55 | 0,030      | 0,035 | ^          | 375     | 630     | 14  | ۸                   |
| 55        | 0,52-0,60 | 0,030      | 0,035 | ^          | 380     | 650     | 13  | ۸                   |
| 58 (55пп) | 0,55-0,63 | 0,030      | 0,035 | ^          | 315     | 600     | 12  | ۸                   |
| 60        | 0,57-0,65 | 0,030      | 0,035 | ^          | 400     | 680     | 12  | ۸                   |
| 60пп      | 0,57-0,65 | 0,035      | 0,040 | ^          | 355     | 600     | 12  | ۸                   |
| 15Г       | 0,12-0,19 | 0,030      | 0,035 | ^          | 245     | 410     | 26  | ۸                   |
| 20Г       | 0,17-0,24 | 0,030      | 0,035 | ^          | 275     | 450     | 24  | ۸                   |
| 10Γ2      | 0,07-0,15 | 0,030      | 0,035 | ^          | 245     | 420     | 22  | ۸                   |

#### 2. Basic properties of in heat-treated condition

| Cuada | Chemical  | compositio | n (%) | Max.<br>CEV | Ys      | Us      | εL  | Impact           |
|-------|-----------|------------|-------|-------------|---------|---------|-----|------------------|
| Grade | С         | Р          | S     | (%)         | (N/mm²) | (N/mm²) | (%) | toughness<br>(J) |
| 25Г   | 0,22-0,30 | 0,030      | 0,035 | ۸           | 295     | 490     | 22  | ٨                |
| 30Г   | 0,27-0,35 | 0,030      | 0,035 | ۸           | 315     | 540     | 20  | ۸                |
| 35Г   | 0,32-0,40 | 0,030      | 0,035 | ۸           | 335     | 560     | 18  | ^                |
| 40Γ   | 0,37-0,45 | 0,030      | 0,035 | ۸           | 355     | 590     | 17  | ۸                |
| 45Г   | 0,42-0,50 | 0,030      | 0,035 | ۸           | 375     | 620     | 15  | ۸                |
| 50Г   | 0,48-0,56 | 0,030      | 0,035 | ^           | 390     | 650     | 13  | ^                |
| 30Г2  | 0,26-0,35 | 0,030      | 0,035 | ۸           | 345     | 590     | 15  | ^                |
| 35Г2  | 0,31-0,39 | 0,030      | 0,035 | ۸           | 365     | 620     | 13  | ^                |
| 40Γ2  | 0,36-0,44 | 0,030      | 0,035 | ۸           | 380     | 660     | 12  | ٨                |
| 45Г2  | 0,41-0,49 | 0,030      | 0,035 | ۸           | 400     | 690     | 11  | ٨                |
| 50Γ2  | 0,46-0,55 | 0,030      | 0,035 | ۸           | 420     | 740     | 11  | ٨                |

3. Standardized properties of samples cut out from heat-treated billets with dimensions

| Grade | Dimension    | Chemical  |       |             | Max.<br>CEV | Ys      | Us       | ει  | Impact<br>toughness |
|-------|--------------|-----------|-------|-------------|-------------|---------|----------|-----|---------------------|
| Grade | (mm)         | С         | Р     | S           | (%)         | (N/mm²) | (N/mm²)  | (%) | (J)                 |
| 25    | d ≤ 16       | 0,22-0,30 | 0,030 | 0,035       | ۸           | 375     | 550-700  | 19  | ٨                   |
| 25    | 16 < d ≤ 40  | 0,22-0,30 | 0,030 | 0,055       | ,           | 315     | 500-650  | 21  | ,                   |
|       | d ≤ 16       |           |       |             |             | 400     | 600-750  | 18  |                     |
| 30    | 16 < d ≤ 40  | 0,27-0,35 | 0,030 | 0,035       | ^           | 355     | 550-700  | 20  | ٨                   |
|       | 40 < d ≤ 100 |           |       |             |             | 295     | 500-650  | 21  |                     |
|       | d ≤ 16       |           |       |             |             | 430     | 630-780  | 17  |                     |
| 35    | 16 < d ≤ 40  | 0,32-0,40 | 0,030 | 0,035       | ۸           | 380     | 600-750  | 19  | ^                   |
|       | 40 < d ≤ 100 |           |       |             |             | 315     | 550-700  | 20  |                     |
|       | d ≤ 16       |           |       |             |             | 460     | 650-800  | 16  |                     |
| 40    | 16 < d ≤ 40  | 0,37-0,45 | 0,030 | 0,030 0,035 | ^           | 400     | 630-780  | 18  | ۸                   |
|       | 40 < d ≤ 100 |           |       |             |             | 355     | 600-750  | 19  |                     |
|       | d ≤ 16       |           |       |             |             | 490     | 700-850  | 14  |                     |
| 45    | 16 < d ≤ 40  | 0,42-0,50 | 0,030 | 0,035       | ^           | 430     | 650-800  | 16  | ٨                   |
|       | 40 < d ≤ 100 |           |       |             |             | 375     | 630-780  | 17  | 1                   |
|       | d ≤ 16       |           |       |             |             | 520     | 750-900  | 13  |                     |
| 50    | 16 < d ≤ 40  | 0,47-0,55 | 0,030 | 0,035       | ^           | 460     | 700-850  | 15  | ٨                   |
|       | 40 < d ≤ 100 |           |       |             |             | 400     | 650-800  | 16  | 1                   |
|       | d ≤ 16       |           |       |             |             | 550     | 800-950  | 12  |                     |
| 55    | 16 < d ≤ 40  | 0,52-0,60 | 0,030 | 0,035       | ^           | 490     | 750-900  | 14  | ٨                   |
|       | 40 < d ≤ 100 |           |       |             |             | 420     | 700-850  | 15  |                     |
|       | d ≤ 16       |           |       |             |             | 580     | 850-1000 | 11  |                     |
| 60    | 16 < d ≤ 40  | 0,57-0,65 | 0,030 | 0,035       | ۸           | 520     | 800-950  | 13  | ۸                   |
|       | 40 < d ≤ 100 |           |       |             |             | 450     | 750-900  | 14  |                     |

<sup>^</sup> To be specified by the purchaser.

Note: the first two figures - the average mass fraction of carbon (w(C)%  $\times$  100); letter " $\Gamma$ " – alloy element of Manganese; the figure after the letter - approximate mass fraction of allying elements in whole units.

with dimensional and/or mass tolerances in accordance with:

GOST 103-2006, GOST 2590-2006, GOST 2591-2006

#### A.6.6 Acceptable Russian structural steel: strips for cold formed open sections

GOST 27772-2015 - Rolled products for steel structural elements. General specifications

| Grade            | Thickness   | Chemic | al composit | tion (%) | Max.<br>CEV | Ys      | Us                   | ει       | Impact                       |
|------------------|-------------|--------|-------------|----------|-------------|---------|----------------------|----------|------------------------------|
| Grade            | (mm)        | С      | Р           | S        | (%)         | (N/mm²) | (N/mm <sup>2</sup> ) | (%)      | Toughness<br>(J)             |
| COOL             | 2 ≤ t ≤ 3.9 | 0.22   | 0.040       | 0.040    | ^           | 235     | 360                  | ٨        | ۸                            |
| C235             | t = 4.0     | 0.22   | 0.040       | 0.040    | ^           | 235     | 360                  | <u> </u> | ^                            |
| 00.45            | 2 ≤ t ≤ 3.9 | 0.00   | 0.040       | 0.005    | ۸           | 245     | 370                  | 20       | >241 0 000                   |
| C245             | 4 ≤ t ≤ 30  | 0.22   | 0.040       | 0.025    | ^           | 235     | 370                  | 24       | ≥34J @ 0°C                   |
|                  | 2 ≤ t ≤ 3.9 |        |             |          |             | 255     | 380                  | 20       | ۸                            |
| C255             | 4 ≤ t ≤ 10  | 0.17   | 0.035       | 0.025    | ^           | 245     | 380                  | 25       | ≥34J @ 0°C<br>≥34J @ -20°C   |
|                  | 2 ≤ t ≤ 3.9 |        |             |          |             | 345     | 490                  | 21       | ۸                            |
| C345             | 4 ≤ t ≤ 10  | 0.15   | 0.030       | 0.025    | 0.45        | 345     | 490                  | 21       | ≥34J @ -20°C<br>≥34J @ -40°C |
| C355             | 8 ≤ t ≤ 16  | 0.14   | 0.025       | 0.025    | 0.45        | 355     | 470                  | 21       | ≥34J @ -20°C<br>≥34J @ -40°C |
| C355-1           | 8 ≤ t ≤ 16  | 0.15   | 0.017       | 0.015    | 0.45        | 355     | 470                  | 21       | ≥34J @ -20°C<br>≥34J @ -40°C |
| C355K            | 8 ≤ t ≤ 16  | 0.15   | 0.020       | 0.015    | 0.45        | 355     | 470                  | 21       | ≥34J @ -20°C<br>≥34J @ -40°C |
| С355П            | 8 ≤ t ≤ 16  | 0.10   | 0.020       | 0.015    | 0.45        | 355     | 470                  | 21       | ≥34J @ -20°C<br>≥34J @ -40°C |
| C390<br>(C390-1) | 8 ≤ t ≤ 50  | 0.12   | 0.017       | 0.010    | 0.46        | 390     | 520                  | 20       | ≥34J @ -40°C<br>≥34J @ -60°C |
| C440             | 8 ≤ t ≤ 50  | 0.12   | 0.017       | 0.010    | 0.46        | 440     | 540                  | 20       | ≥66J @ -40°C<br>≥66J @ -60°C |
| C550             | 8 ≤ t ≤ 50  | 0.10   | 0.015       | 0.007    | 0.47        | 540     | 640                  | 17       | ≥66J @ -40°C<br>≥66J @ -60°C |
| C590             | 8 ≤ t ≤ 40  | 0.10   | 0.015       | 0.004    | 0.51        | 590     | 685                  | 14       | ≥66J @ -40°C<br>≥66J @ -60°C |

<sup>^</sup> To be specified by the purchaser.

Note: letter "C" - "Structure Steel"; figure "1" – another option of chemical composition; letter "K" - the steel of improved corrosion resistance; letter " $\Pi$ " - the steel of improved fire resistance.

## GOST 1050-2013: Metal products from nonalloyed structural quality and special steels. General specification

#### 1. In normalized condition

| Chemical Grade | ical composit | ion (%) | Max<br>CEV | Ys  | Us      | $\epsilon_{L}$ | Impact |                  |
|----------------|---------------|---------|------------|-----|---------|----------------|--------|------------------|
| Grade          | С             | Р       | S          | (%) | (N/mm²) | (N/mm²)        | (%)    | toughness<br>(J) |
| 10             | 0,07-0,14     | 0,030   | 0,035      | ^   | 205     | 330            | 31     | ۸                |
| 15             | 0,12-0,19     | 0,030   | 0,035      | ^   | 225     | 370            | 27     | ۸                |
| 20             | 0,17-0,24     | 0,030   | 0,035      | ^   | 245     | 410            | 25     | ^                |
| 15Г            | 0,12-0,19     | 0,030   | 0,035      | ^   | 245     | 410            | 26     | ۸                |
| 20Γ            | 0,17-0,24     | 0,030   | 0,035      | ^   | 275     | 450            | 24     | ۸                |
| 10Γ2           | 0,07-0,15     | 0,030   | 0,035      | ^   | 245     | 420            | 22     | ۸                |

<sup>^</sup> To be specified by the purchaser.

Note: the first two figures - the average mass fraction of carbon ( $w(C)\% \times 100$ ); letter " $\Gamma$ " – alloy element of Manganese; the figure after the letter - approximate mass fraction of allying elements in whole units.

<sup>\*</sup> Steels in this table are in normalized condition.

GOST 535-2005 - Common quality carbon steel bar and shaped sections. General specifications

| Grate        | Thickness | Chemical c | ompositic | on (%) | Max.<br>CEV | Ys      | Us      | ει  | Impact<br>toughness         |
|--------------|-----------|------------|-----------|--------|-------------|---------|---------|-----|-----------------------------|
| Grate        | (mm)      | С          | Р         | S      | (%)         | (N/mm²) | (N/mm²) | (%) | (J)                         |
| Ст1пс, Ст1сп | t ≤ 10    | 0.06~0.12  | 0.040     | 0.050  | 0.45        | 205     | 315~410 | 34  | ^                           |
| Ст2кп        | t ≤ 10    | 0.09~0.15  | 0.040     | 0.050  | 0.45        | 215     | 325~410 | 33  | ۸                           |
| Ст2пс, Ст2сп | t ≤ 10    | 0.09~0.15  | 0.040     | 0.050  | 0.45        | 225     | 335~430 | 32  | ۸                           |
| Ст3кп        | t ≤ 10    | 0.14~0.22  | 0.040     | 0.050  | 0.45        | 235     | 360~460 | 27  | ۸                           |
| Ст3пс        | t ≤ 10    | 0.14~0.22  | 0.040     | 0.050  | 0.45        | 245     | 370~480 | 26  | ≥34J @ +20°C<br>for t≤26mm  |
| Ст3сп        | t ≤ 10    | 0.14~0.22  | 0.040     | 0.050  | 0.45        | 255     | 380~490 | 26  | ≥34J @ +20°C<br>for t≤26mm  |
| Ст3Гпс       | t ≤ 10    | 0.14~0.22  | 0.040     | 0.050  | 0.45        | ۸       | 370~490 | 26  | ≥34J @ +20°C,<br>for t≤26mm |
| Ст3Гсп       | t ≤ 20    | 0.14~0.22  | 0.040     | 0.050  | 0.45        | ۸       | 390~570 | ^   | ≥34J @ +20°C<br>for t≤26mm  |
| Ст4пс, Ст4сп | t ≤ 10    | 0.18~0.27* | 0.040     | 0.050  | 0.45        | 265     | 410~530 | 24  | ۸                           |
| Ст5Гпс       | t ≤ 10    | 0.22~0.30* | 0.040     | 0.050  | 0.45        | ^       | 450~590 | 20  | ۸                           |

<sup>^</sup> To be specified by the purchaser.

Note: letter "Cτ" - "Steel"; letter 'Γ" - the mass fraction of manganese in steel is not less than 0.80 %; letters "κπ", "πc", "cn" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively.

#### GOST 11474-76: Bent-steel sections. Specifications:

Sections in GOST 11474 must be made of steel sheet grades (Us  $\leq$  588 N/mm<sup>2</sup>) according to standards list below GOST 14637-89, GOST 16523-97, GOST 1577-93, GOST 17066-94, and GOST 19281-2014.

GOST 14637-89 - Rolled plate from carbon steel of general quality. Specifications

| Cuada            | Thickness | Chemical co | mpositio | n (%) | Max.<br>CEV | Ys      | Us      | ε <sub>L</sub> | Impact                    |
|------------------|-----------|-------------|----------|-------|-------------|---------|---------|----------------|---------------------------|
| Grade            | (mm)      | С           | Р        | S     | (%)         | (N/mm²) | (N/mm²) | (%)            | Toughness<br>(J)          |
| Ст2кп            | t ≤20     | 0.09~0.15   | 0.040    | 0.050 | ۸           | 215     | 320~410 | 33             | ٨                         |
| Ст2пс, Ст2сп     | t ≤20     | 0.09~0.15   | 0.040    | 0.050 | ۸           | 225     | 330~430 | 32             | ^                         |
| Ст3кп            | t ≤ 20    | 0.14~0.22   | 0.030    | 0.040 | ٨           | 235     | 360~460 | 27             | ^                         |
| Ст3пс,<br>Ст3сп  | t ≤ 20    | 0.14~0.22   | 0.030    | 0.040 | ۸           | 245     | 370~480 | 26             | ≥34J @ 20°C<br>≥30J @ 0°C |
| Ст3Гпс           | t ≤20     | 0.14~0.22   | 0.030    | 0.040 | ٨           | 245     | 370~490 | 26             | ≥34J @ 20°C<br>≥30J @ 0°C |
| Ст3Гсп           | t ≤20     | 0.14~0.22   | 0.030    | 0.040 | ۸           | 255     | 390~570 | 23             | ≥34J @ 20°C<br>≥30J @ 0°C |
| Ст4пс,<br>Ст4спs | t ≤ 20    | 0.18~0.27*  | 0.030    | 0.040 | ۸           | 265     | 410~530 | 24             | ۸                         |
| Ст5Гпс           | t ≤20     | 0.22~0.30*  | 0.030    | 0.040 | ۸           | 285     | 450~590 | 20             | ۸                         |

<sup>^</sup> To be specified by the purchaser.

Note: letter "Cτ" - "Steel"; letter "Γ" - the mass fraction of manganese in steel is not less than 0.80 %; letters "κπ", "πc", "cπ" - the deoxidation degree of steel is rimmed, semiskilled, and killed respectively.

<sup>\*</sup> The mass fraction of carbon for welded structures must not exceed 0.22%.

<sup>\*</sup> The mass fraction of carbon for welded structures must not exceed 0.22%.

<sup>\*\*</sup> At the request of the customer, the mass fraction shall not exceed 0.040% for sulfur and 0.030% for phosphorus in rolled steel of categories 1 to 5, and each of these elements shall not exceed 0.025% in rolled steel of category 6.

GOST 16523-97: Rolled sheets from quality and ordinary carbon steel for purposes. Specifications

| Grade       | Thickness   | Chemical co | ompositio | n (%) | Max.<br>CEV | Ys        | Us        | ει  | Impact           |
|-------------|-------------|-------------|-----------|-------|-------------|-----------|-----------|-----|------------------|
| Grade       | (mm)        | С           | Р         | S     | (%)         | (N/mm²)   | (N/mm²)   | (%) | toughness<br>(J) |
| K260B       | t ≤ 2       | 0.05~0.12   | 0.030     | 0.035 | ۸           | ۸         | 260 - 380 | 25  | . ^              |
| KZOUB       | 2 < t ≤ 3.9 | 0.05 0.12   | 0.030     | 0.035 |             |           | 260 - 380 | 28  |                  |
| K270B       | t ≤ 2       | 0.05~0.14   | 0.030     | 0.035 | ^           | ۸         | 270 - 410 | 24  | Λ                |
| 2 < t ≤ 3.9 | 0.05 0.14   | 0.030       | 0.055     |       | ,           | 270 - 410 | 26        |     |                  |
| OK300B      | t ≤ 2       | 0.06~0.12   | 0.040     | 0.050 | ^           | 215       | 300 - 480 | 21  | ٨                |
| OKSOOB      | 2 < t ≤ 3.9 |             |           |       |             | 213       |           | 23  | ,,               |
| K310B       | t ≤ 2       | 0.12~0.19   | 0.030     | 0.035 | ^           | ٨         | 310 - 440 | 23  | Λ                |
| KSTOB       | 2 < t ≤ 3.9 | 0.12 0.19   | 0.030     | 0.035 | ^           | ^         |           | 25  |                  |
| K330B       | t≤2         | 0.12~0.24   | 0.030     | 0.035 | ۸           | ٨١        | 220 - 460 | 23  | Λ                |
| NSSUB       | 2 < t ≤ 3.9 | 0.12 0.24   | 0.030     | 0.055 |             | • • •     | 330 - 460 | 24  |                  |
| NSEUB       | t ≤ 2       | 0.17~0.24   | 0.030     | 0.035 | ^           | ٨         | 250 500   | 22  | Λ                |
| K350B       | 2 < t ≤ 3.9 | 0.17 0.24   | 0.030     | 0.055 | ,           | Λ         | 350 - 500 | 23  |                  |
| OK360B      | t≤2         | 0.14~0.22   | 0.040     | 0.050 | ۸           | 235       | 360 - 530 | 20  | - ^              |
| ON300B      | 2 < t ≤ 3.9 | 0.14 0.22   | 0.040     | 0.050 | ,           | 233       | 300 - 330 | 22  |                  |

<sup>^</sup> To be specified by the purchaser.

Note: the three figures - the lower limit of tensile strength; letter "OK" - ordinary quality carbon steel; letter "K" - quality carbon steel.

#### GOST 17066-94: Rolled sheet of high-strength steel. Specifications

| Cuada | Thickness     | Chemical composition (%) |       |       | Max.       | Ys      | U,      |     | Impact<br>toughnes |
|-------|---------------|--------------------------|-------|-------|------------|---------|---------|-----|--------------------|
| Grade | (mm)          | С                        | Р     | S     | CEV<br>(%) | (N/mm²) | (N/mm²) | (%) | s<br>(J)           |
| 295   | 0.5 ≤ t ≤ 3.9 | 0.16                     | 0.035 | 0.040 | ^          | 295     | 440     | 20  | ۸                  |
| 315   | 0.5 ≤ t ≤ 3.9 | 0.16                     | 0.035 | 0.040 | ۸          | 315     | 460     | 20  | ۸                  |
| 345   | 0.5 ≤ t ≤ 3.9 | 0.18                     | 0.035 | 0.040 | ۸          | 345     | 490     | 19  | ۸                  |
| 355   | 0.5 ≤ t ≤ 3.9 | 0.20                     | 0.035 | 0.040 | ۸          | 355     | 510     | 18  | ۸                  |
| 390   | 0.5 ≤ t ≤ 3.9 | 0.22                     | 0.035 | 0.040 | ۸          | 390     | 530     | 18  | ۸                  |

<sup>^</sup> To be specified by the purchaser.

#### GOST 1577-93 - Rolled sheets and wide strips of structural quality steel. Specifications

|       | Thickness<br>(mm) | Chemical composition (%) |       |       | Max.       | v                         |                           | ει                           | Impact                        |                  |
|-------|-------------------|--------------------------|-------|-------|------------|---------------------------|---------------------------|------------------------------|-------------------------------|------------------|
| Grade |                   | С                        | Р     | S     | CEV<br>(%) | Y <sub>s</sub><br>(N/mm²) | U <sub>s</sub><br>(N/mm²) | along<br>rolled<br>direction | across<br>rolled<br>direction | toughness<br>(J) |
| 20    | 6 ≤ t ≤ 60        | 0.17~0.24                | 0.030 | 0.035 | ۸          | 230                       | 400~550                   | 27                           | 25                            | ٨                |

<sup>^</sup> To be specified by the purchaser.

Note: the two figures - the average mass fraction of carbon (w(C)%  $\times$  100).

<sup>\*</sup> Steels in this table are hot rolled products.

<sup>\*</sup> Steels in this table are hot rolled products.

<sup>\*\*</sup> At the request of the customer, the mass fraction shall not exceed 0.035% for sulfur and 0.030% for phosphorus.

Steels in this table are in normalized condition.

GOST 19281-2014 - High strength rolled steel. General specification

| Grade | Thickness | Chemical | Chemical composition (%)  Max.  CEV |       | Us   | ει                   | Impact<br>Toughness  |     |                                                                                                                                                         |  |
|-------|-----------|----------|-------------------------------------|-------|------|----------------------|----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Grade | (mm)      | С        | Р                                   | S     | (%)  | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (%) | (J)                                                                                                                                                     |  |
| 265   | t ≤ 160   | 0.14     | 0.030                               | 0.035 | 0.43 | 265                  | 430                  | 21  | ≥34J @ 0°C and ≥29J @-20°C for t ≤ 20mm                                                                                                                 |  |
| 295   | t ≤ 100   | 0.14     | 0.030                               | 0.035 | 0.43 | 295                  | 430                  | 21  | ≥34J @ 0°C, ≥29J @-20°C                                                                                                                                 |  |
| 315   | t ≤ 60    | 0.18     | 0.030                               | 0.035 | 0.43 | 315                  | 450                  | 21  | ≥34J @ 0°C, ≥29J @-20°C                                                                                                                                 |  |
| 325   | t ≤ 60    | 0.22     | 0.030                               | 0.035 | 0.43 | 325                  | 450                  | 21  | ≥34J @ 0°C, ≥29J @-20°C                                                                                                                                 |  |
| 345   | t ≤ 50    | 0.22     | 0.030                               | 0.035 | 0.46 | 345                  | 490                  | 21  | ≥34J @ -20°C for t≤12mm,<br>≥39J @ 0°C & -20°C for<br>12mm <t≤50mm< td=""></t≤50mm<>                                                                    |  |
| 355   | t ≤ 50    | 0.22     | 0.030                               | 0.035 | 0.46 | 355                  | 490                  | 20  | ≥34J @ 0°C, ≥29J @-20°C                                                                                                                                 |  |
| 375   | t ≤ 50    | 0.22     | 0.030                               | 0.035 | 0.46 | 375                  | 510                  | 20  | ≥29J @-20°C                                                                                                                                             |  |
| 390   | t ≤ 50    | 0.22     | 0.030                               | 0.035 | 0.48 | 390                  | 510                  | 19  | ≥29J @ -20°C for t≤10mm,<br>≥39J @ 0°C & ≥29J @ -20°C<br>for 10mm <t≤15mm,<br>≥39J @ 0°C &amp; -20°C for<br/>15mm<t≤50mm< td=""></t≤50mm<></t≤15mm,<br> |  |

with dimensional and/or mass tolerances in accordance with:

GOST 8278-83,GOST 8281-80, GOST 8282-83, GOST 8283-93, GOST 13229-78, GOST 19771-93, GOST 19772-93, GOST 7511-73.

### A.6.7 Acceptable Russian strips for cold-formed steel profiled sheetings

GOST 16523-97: Rolled sheets from quality and ordinary carbon steel for purposes. Specifications

#### 1. Hot rolled steel

| Grade  | Thickness   | Chemical co  | ompositio | n (%) | Max.<br>CEV | Y <sub>s</sub> | Us        | ει  | Impact<br>toughness<br>(J) |
|--------|-------------|--------------|-----------|-------|-------------|----------------|-----------|-----|----------------------------|
| Grade  | (mm)        | С            | Р         | S     | (%)         | (N/mm²)        | (N/mm²)   | (%) |                            |
| K260B  | t≤2         | 0.05~0.12    | 0.030     | 0.035 | ^           | ۸              | 260 - 380 | 25  | Λ                          |
| NZOUB  | 2 < t ≤ 3.9 | 0.05 0.12    | 0.030     | 0.033 |             | ,              |           | 28  |                            |
| K270B  | t ≤ 2       | 0.05~0.14    | 0.030     | 0.035 | ^           | ٨              | 270 - 410 | 24  | ٨                          |
| NZ/UB  | 2 < t ≤ 3.9 | 0.05 0.14    | 0.030     |       |             | ,              |           | 26  |                            |
| OK300B | t ≤ 2       | 0.06~0.12    | 0.040     | 0.050 | ۸           | 215            | 300 - 480 | 21  | ۸                          |
| UKSUUB | 2 < t ≤ 3.9 | 0.06 0.12    |           | 0.030 |             |                |           | 23  | ^                          |
| K310B  | t ≤ 2       | 0.12~0.19    | 0.030     | 0.035 | ٨           | ۸              | 310 - 440 | 23  | ^                          |
| V210P  | 2 < t ≤ 3.9 |              |           |       |             |                |           | 25  |                            |
| K330B  | t≤2         | 0.12~0.24    | 0.030     | 0.035 | ٨           | ^              | 330 - 460 | 23  | ٨                          |
| ИЗЗОВ  | 2 < t ≤ 3.9 | 0.12 0.24    | 0.030     | 0.055 |             |                | 330 - 460 | 24  | ,,                         |
| K350B  | t≤2         | 0.47.0.04    | 0.030     | 0.035 | ^           | ۸              | 350 - 500 | 22  | ٨                          |
| NOOUB  | 2 < t ≤ 3.9 | 0.17~0.24    | 0.030     | 0.035 | ,           | A              | 330 - 500 | 23  | ,                          |
| ONSEOB | t ≤ 2       | 0.4.40**0.22 | 0.040     | 0.050 | ۸           | 235            | 360 - 530 | 20  | ^                          |
| OK360B | 2 < t ≤ 3.9 | 0.140~0.22   |           | 0.050 |             | 233            | 300 - 330 | 22  | ,,                         |

### 2. Cold rolled steel

| Cuada  | Thickness   | Chemical c | ompositio | on (%) | Max. | Ϋ́s     | Us        | ε <sub>L</sub> | Impact<br>toughness<br>(J) |
|--------|-------------|------------|-----------|--------|------|---------|-----------|----------------|----------------------------|
| Grade  | (mm)        | С          | Р         | S      | (%)  | (N/mm²) | (N/mm²)   | (%)            |                            |
| K260B  | t ≤ 2       | 0.05~0.12  | 0.030     | 0.035  | ٨    | ٨       | 260 - 380 | 26             | ۸                          |
| KZOUB  | 2 < t ≤ 3.9 | 0.05 0.12  | 0.030     |        | ,    | ,       | 200 - 380 | 29             | ,                          |
| К270В  | t ≤ 2       | 0.05~0.14  | 0.030     | 0.035  | ^    | ٨       | 270 - 410 | 25             | Λ                          |
| KZ/UB  | 2 < t ≤ 3.9 | 0.05 0.14  | 0.030     | 0.055  |      | ,       |           | 28             | 1 "                        |
| OK300B | t ≤ 2       | 0.06~0.12  | 0.040     | 0.050  | ۸    | 215     | 300 - 480 | 24             | ٨                          |
| OKSOOB | 2 < t ≤ 3.9 | 0.00 0.12  |           |        |      |         |           | 26             |                            |
| K310B  | t ≤ 2       | 0.12~0.19  | 0.030     | 0.035  | ۸    | ۸       | 310 - 440 | 24             | ۸                          |
| KSTOB  | 2 < t ≤ 3.9 |            |           |        |      |         | 310 - 440 | 27             |                            |
| K330B  | t ≤ 2       | 0.12~0.24  | 0.030     | 0.035  | ٨    | ۸       | 330 - 460 | 24             | . ^                        |
| NSSOB  | 2 < t ≤ 3.9 | 0.12 0.24  | 0.030     | 0.033  |      |         |           | 25             |                            |
| K350B  | t ≤ 2       | 0.17~0.24  | 0.030     | 0.035  | ^    | ٨       | 350 - 500 | 23             | ۸                          |
| NOOD   | 2 < t ≤ 3.9 | 0.17 0.24  | 0.030     | 0.055  | ,    | Α       | 350 - 500 | 24             | - '                        |
| OK360B | t ≤ 2       | 0.140~0.22 | 0.040     | 0.050  | ۸    | 235     | 360 - 530 | 22             | ۸                          |
| ONSOUB | 2 < t ≤ 3.9 | 0.140 0.22 |           |        |      |         |           | 24             |                            |

<sup>^</sup> To be specified by the purchaser.

Note: the three figures - the lower limit of tensile strength; letter "OK" - ordinary quality carbon steel; letter "K" - quality carbon steel.

### GOST 17066-94: Rolled sheet of high-strength steel. Specifications

#### 1. Hot rolled steel

| Grade | Thickness     | Chemical composition (%) |       |       | Max.<br>CEV | Y <sub>s</sub> | Us      | εμ  | Impact           |
|-------|---------------|--------------------------|-------|-------|-------------|----------------|---------|-----|------------------|
| Grade | (mm)          | С                        | Р     | S     | (%)         | (N/mm²)        | (N/mm²) | (%) | toughness<br>(J) |
| 295   | 0.5 ≤ t ≤ 3.9 | 0.16                     | 0.035 | 0.040 | ^           | 295            | 440     | 20  | ۸                |
| 315   | 0.5 ≤ t ≤ 3.9 | 0.16                     | 0.035 | 0.040 | ^           | 315            | 460     | 20  | ٨                |
| 345   | 0.5 ≤ t ≤ 3.9 | 0.18                     | 0.035 | 0.040 | ^           | 345            | 490     | 19  | ٨                |
| 355   | 0.5 ≤ t ≤ 3.9 | 0.20                     | 0.035 | 0.040 | ^           | 355            | 510     | 18  | ٨                |
| 390   | 0.5 ≤ t ≤ 3.9 | 0.22                     | 0.035 | 0.040 | ^           | 390            | 530     | 18  | ۸                |

#### 2. Cold rolled steel

| Grade | Thickness           | Chemical composition (%) |       |       | Max.<br>CEV | Y <sub>s</sub> (N/mm²) | Us      | ε <sub>L</sub> | Impact<br>toughness |
|-------|---------------------|--------------------------|-------|-------|-------------|------------------------|---------|----------------|---------------------|
| Grade | (mm)                | С                        | Р     | S     | (%)         | (N/mm²)                | (N/mm²) | (%)            | (J)                 |
| 295   | 0.5 ≤ t ≤ 3.9       | 0.16                     | 0.035 | 0.040 | ^           | 295                    | 410     | 20             | ۸                   |
| 315   | $0.5 \le t \le 3.9$ | 0.16                     | 0.035 | 0.040 | ^           | 315                    | 430     | 20             | ٨                   |
| 345   | $0.5 \le t \le 3.9$ | 0.18                     | 0.035 | 0.040 | ^           | 345                    | 460     | 19             | ٨                   |
| 355   | $0.5 \le t \le 3.9$ | 0.20                     | 0.035 | 0.040 | ^           | 355                    | 480     | 18             | ٨                   |
| 390   | 0.5 ≤ t ≤ 3.9       | 0.22                     | 0.035 | 0.040 | ^           | 390                    | 500     | 18             | ۸                   |

<sup>^</sup> To be specified by the purchaser.

# GOST R 52246-2004: Hot-dip zinc-coated steel sheet. Specifications

| Grade | Thickness     | Chemi | ical composi | tion (%) | Max. Y <sub>s</sub> |         | Us        | ει  | Impact<br>toughness |
|-------|---------------|-------|--------------|----------|---------------------|---------|-----------|-----|---------------------|
| Graue | (mm)          | С     | Р            | S        | (%)                 | (N/mm²) | (N/mm²)   | (%) | (J)                 |
|       | t ≤ 0.7       |       |              | 0.040    |                     |         |           | 20  |                     |
| 02    | 0.7 < t ≤ 1.5 | 0.12  | 0.040        |          | ۸                   | ۸       | 270 - 500 | 22  | ۸                   |
| 02    | 1.5 < t ≤ 2.0 | 0.12  | 0.040        | 0.040    | ^                   | Α       | 270 - 300 | ^   |                     |
|       | 2.0 < t ≤ 4.5 |       |              |          |                     |         |           | ^   |                     |
|       | t ≤ 0.7       |       |              |          |                     | ۸       | 270 - 420 | 24  |                     |
| 03    | 0.7 < t ≤ 1.5 | 0.12  | 0.030        | 0.030    | ۸                   |         |           | 26  | ۸                   |
| 03    | 1.5 < t ≤ 2.0 |       |              |          |                     | ,       |           | 28  |                     |
|       | 2.0 < t ≤ 4.5 |       |              |          |                     |         |           | 30  |                     |
|       | t ≤ 0.7       | 0.10  | 0030         | 0.030    |                     |         |           | 28  |                     |
| 04    | 0.7 < t ≤ 1.5 |       |              |          | ۸                   | ≤ 260   | 270 - 380 | 30  | ^                   |
| 04    | 1.5 < t ≤ 2.0 |       |              |          |                     |         | 270 - 380 | 32  |                     |
|       | 2.0 < t ≤ 4.5 |       |              |          |                     |         |           | ^   |                     |
|       | t ≤ 0.7       |       |              |          |                     |         |           | 34  |                     |
| 05    | 0.7 < t ≤ 1.5 | 0.08  | 0.030        | 0.000    | ^                   | ≤ 220   | 270 250   | 36  |                     |
| 05    | 1.5 < t ≤ 2.0 | 0.08  | 0.030        | 0.030    |                     |         | 270 - 350 | 38  |                     |
|       | 2.0 < t ≤ 4.5 |       |              |          |                     |         |           | ۸   |                     |
|       | t ≤ 0.7       |       |              | 0.040    |                     | ≥220    |           | 18  |                     |
| 220   | 0.7 < t ≤ 1.5 | 0.22  | 0.040        |          | ۸                   |         | >200      | 20  |                     |
| 220   | 1.5 < t ≤ 2.0 |       | 0.040        |          |                     |         | ≥300      | 20  | ]                   |
|       | 2.0 < t ≤ 4.5 |       |              |          |                     |         |           | 20  |                     |

(To be continued)

<sup>\*</sup> At the request of the customer, the mass fraction shall not exceed 0.035% for sulfur and 0.030% for phosphorus.

(Continued)

| Crada | Thickness     | Chemical composition (%) |       |       | Max.<br>CEV | Ys      | Us      | ε <sub>L</sub> | Impact<br>toughness |
|-------|---------------|--------------------------|-------|-------|-------------|---------|---------|----------------|---------------------|
| Grade | (mm)          | С                        | Р     | S     | (%)         | (N/mm²) | (N/mm²) | (%)            | (J)                 |
|       | t ≤ 0.7       |                          |       | 0.040 |             |         |         | 17             |                     |
| 250   | 0.7 < t ≤ 1.5 | 0.22                     | 0.040 |       | ٨           | ≥250    | ≥330    | 19             | ^                   |
| 250   | 1.5 < t ≤ 2.0 |                          | 0.040 |       |             |         |         | 19             | ^                   |
|       | 2.0 < t ≤ 4.5 |                          |       |       |             |         |         | 19             |                     |
| 280   | t ≤ 0.7       | 0.25                     | 0.040 | 0.040 | ۸           | ≥280    | ≥360    | 16             |                     |
|       | 0.7 < t ≤ 1.5 |                          |       |       |             |         |         | 18             | ^                   |
|       | 1.5 < t ≤ 2.0 |                          |       |       |             |         |         | 18             |                     |
|       | 2.0 < t ≤ 4.5 |                          |       |       |             |         |         | 18             |                     |
|       | t ≤ 0.7       | 0.25                     | 0.040 | 0.040 | ^           | ≥320    | ≥390    | 15             |                     |
| 320   | 0.7 < t ≤ 1.5 |                          |       |       |             |         |         | 17             | ^                   |
| 320   | 1.5 < t ≤ 2.0 |                          | 0.040 |       |             |         |         | 17             |                     |
|       | 2.0 < t ≤ 4.5 |                          |       |       |             |         |         | 17             |                     |
|       | t ≤ 0.7       | 0.25                     |       | 0.040 | ٨           | ≥350    | ≥420    | 14             |                     |
| 250   | 0.7 < t ≤ 1.5 |                          | 0.040 |       |             |         |         | 16             | ^                   |
| 350   | 1.5 < t ≤ 2.0 |                          |       |       |             |         |         | 16             |                     |
| •     | 2.0 < t ≤ 4.5 |                          |       |       |             |         |         | 16             |                     |

with dimensional and/or mass tolerances in accordance with: GOST 19903-2015, GOST 19904.

### A.6.8 Acceptable Russian stud connectors

Stud connectors manufactured to:-

- GOST 1759.0-87
- GOST R ISO 898-1-2014

#### A.6.9 Acceptable Russian non-preloaded bolting assemblies

#### Bolts manufactured to:-

- GOST 1759.0-87
- GOST R ISO 898-1-2014
- GOST 18126-94

#### Nuts manufactured to:-

- GOST 1759.0-87
- GOST R ISO 898-2-2013
- GOST ISO 4032-2014
- GOST ISO 8673-2014
- GOST 10605-94
- GOST 18126-94

#### Washers manufactured to:-

- GOST 18123-82
- GOST 11850-72

### A.6.10 Acceptable Russian preloaded bolting assemblies

• GOST R 52643-2006

### A.6.11 Acceptable Russian welding consumables

#### Electrodes manufactured to:-

- GOST 9467-75
- GOST 5.1215-72

#### Wires manufactured to:-

- GOST 2246-70
- GOST 26271-84
- GOST 26101-84

#### Flues manufactured to:-

• GOST 9087-81

# Appendix B List of reference standards

- B.1 British/European standards
- B.2 American standards
- B.3 Japanese standards
- B.4 Australian/New Zealand standards
- B.5 Chinese standards
- B.6 Russian standards

### Appendix B List of materials specifications

This Appendix covers British/European, American, Japanese, Australian/New Zealand, Chinese, and Russian standards used as materials specifications for this document. The specifications listed in this appendix are only current and confirmed at the time of drafting of this document and should be updated in accordance with the latest version of the respective specifications.

#### B.1 British/European specifications

The following British/European standards are published by the British Standards Institution, London, United Kingdom.

### **B.1.1** British/European specifications on design of steel structures

| BS EN 1993-1-1:2005<br>(A1:2004) | Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for Buildings                                    |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| BS EN 1993-1-3:2006              | Eurocode 3: Design of steel structures - Part 1-3: General rules - Supplementary rules for cold-formed members and sheeting |
| BS EN 1993-1-8:2005              | Eurocode 3: Design of steel structures - Part 1-8: Design of joints                                                         |
| BS EN 1993-1-10:2005             | Eurocode 3: Design of steel structures - Part 1-10: Material toughness and through thickness properties                     |
| BS EN 1993-1-12:2007             | Eurocode 3: Design of steel structures - Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S 700  |
| BS EN 1994-1-1:2004              | Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings             |

### **B.1.2** British/European specifications on steel materials

| BS 7668:2016       | Weldable structural steels - Hot finished structural hollow sections in weather resistant steels - Specification                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN 10020:2000   | Definition and classification of grades of steel                                                                                                        |
| BS EN 10021:2006   | General technical delivery requirements for steel and iron products                                                                                     |
| BS EN 10025-1:2004 | Hot rolled products of structural steels - Part 1: General technical delivery conditions                                                                |
| BS EN 10025-2:2019 | Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels                                        |
| BS EN 10025-3:2019 | Hot rolled products of structural steels - Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels |
| BS EN 10025-4:2019 | Hot rolled products of structural steels - Part 4: Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels      |
| BS EN 10025-5:2019 | Hot rolled products of structural steels - Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance   |

| BS EN 10025-6:2019            | Hot rolled products of structural steels - Part 6: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN 10027-1:2016            | Designation systems for steels - Part 1: Steel names                                                                                                                               |
| BS EN 10079:2007              | Definition of steel products                                                                                                                                                       |
| BS EN 10149-1:2013            | Specification for hot-rolled flat products made of high yield strength steels for cold forming - Part 1: General delivery conditions                                               |
| BS EN 10149-2:2013            | Specification for hot-rolled flat products made of high yield strength steels for cold forming - Part 2: Delivery conditions for thermomechanically rolled steels                  |
| BS EN 10149-3:2013            | Specification for hot-rolled flat products made of high yield strength steels for cold forming - Part 3. Delivery conditions for normalized or normalized rolled steels            |
| BS EN 10051:2010              | Continuously hot-rolled uncoated plate, sheet and strip of non-alloy and alloy steels - Tolerances on dimensions and shape                                                         |
| BS EN 10164:2018              | Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions                                                    |
| BS EN 10210-1:2006            | Hot finished structural hollow sections of non-alloy and fine grain steels - Part 1: Technical delivery conditions                                                                 |
| BS EN 10219-1:2006            | Cold formed welded structural hollow sections of non-alloy and fine grain steels - Part 1: Technical delivery conditions                                                           |
| BS EN 10248-1:1996            | Hot rolled steel sheet piling of non alloy steels — Part 1: Technical delivery conditions                                                                                          |
| BS EN 10249-1:1996            | Cold formed steel piling of non alloy steels – Part 1: Technical delivery conditions                                                                                               |
| BS EN 10268:2006<br>(A1:2003) | Cold rolled steel flat products with high yield strength for cold forming - Technical delivery conditions                                                                          |
| BS EN 10326:2004              | Continuously hot-dip coated strip and sheet of structural steels - Technical delivery conditions                                                                                   |
| BS EN 10346:2015              | Continuously hot-dip coated steel flat products - Technical delivery conditions                                                                                                    |

# **B.1.3** British/European specifications on dimensions and shapes

| BS EN 10017:2004   | Steel rod for drawing and/or cold rolling Dimensions and tolerances                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| BS EN 10024:1995   | Hot rolled taper flange I sections - Tolerances on shape and dimensions                                                    |
| BS EN 10029:2010   | Specification for tolerances on dimensions, shape and mass for hot rolled steel plates 3 mm thick or above                 |
| BS EN 10034:1993   | Structural steel I and H sections - Tolerances on shape and dimensions                                                     |
| BS EN 10051:2010   | Continuously hot-rolled uncoated plate, sheet and strip of non-alloy and alloy steels - Tolerances on dimensions and shape |
| BS EN 10055:1996   | Hot rolled steel equal flange tees with radiused root and toes - Dimensions and tolerances on shape and dimensions         |
| BS EN 10056-2:1993 | Specification for structural steel equal and unequal leg angles - Part 2:                                                  |
|                    | Tolerances on shape and dimensions                                                                                         |

| BS EN 10058:2018   | Hot rolled flat steel bars and steel wide flats for general purposes – Dimensions and tolerances on shape and dimensions                                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN 10059:2003   | Hot rolled square steel bars for general purposes – Dimensions and tolerances on shape and dimensions                                                                           |
| BS EN 10060:2003   | Hot rolled round steel bars for general purposes – Dimensions and tolerances on shape and dimensions                                                                            |
| BS EN 10131:2006   | Cold rolled uncoated and zinc or zinc-nickel electrolytically coated low carbon and high yield strength steel flat products for cold forming Tolerances on dimensions and shape |
| BS EN 10140:2006   | Cold rolled narrow steel strip Tolerances on dimensions and shape                                                                                                               |
| BS EN 10143:2006   | Continuously hot-dip coated steel sheet and strip — Tolerances on dimensions and shape                                                                                          |
| BS EN 10210-2:2019 | Hot finished structural hollow sections - Part 2: Tolerances, dimensions and sectional properties                                                                               |
| BS EN 10219-2:2019 | Cold formed welded structural hollow sections - Part 2: Tolerances, dimensions and sectional properties                                                                         |
| BS EN 10248-2:1996 | Hot rolled steel sheet piling of non-alloy steels - Part 2: Tolerances on shape and dimensions                                                                                  |
| BS EN 10249-2:1996 | Cold formed steel sheet piling of non-alloy steels - Part 2: Tolerances on shape and dimensions                                                                                 |
| BS EN 10279:2000   | Hot rolled steel channels - Tolerances on shape, dimension and mass                                                                                                             |

# **B.1.4** British/European specifications on bolting assemblies

| General information                    |                                                                                                                                                              |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BS EN 15048-1:2016                     | Non-preloaded structural bolt assemblies – Part 1: General requirements                                                                                      |  |
| BS EN ISO 898-1:2013                   | Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs                                                    |  |
| BS EN ISO 898-2:2012                   | Mechanical properties of fasteners made of carbon steel and alloy steel - Part 2: Nuts with specified property classes - Coarse thread and fine pitch thread |  |
| BS EN ISO 16426:2002<br>(R2008)(R2018) | Fasteners - Quality assurance system                                                                                                                         |  |
| Non-preloaded assemblies               |                                                                                                                                                              |  |
| BS 4190:2014                           | ISO metric black hexagon bolts, screws and nuts - Specification                                                                                              |  |
| BS 7419:2012                           | Specification for holding down bolts                                                                                                                         |  |
| BS EN ISO 4014:2011                    | Hexagon head bolts - Product grades A and B                                                                                                                  |  |
| BS EN ISO 4016:2011                    | Hexagon head bolts - Product grade C                                                                                                                         |  |
| BS EN ISO 4017:2014                    | Hexagon head screws - Product grades A and B                                                                                                                 |  |
| BS EN ISO 4018:2011                    | Hexagon head screws - Product grade C                                                                                                                        |  |
| BS EN ISO 4032:2012                    | Hexagon regular nuts (style 1) - Product grades A and B                                                                                                      |  |
| BS EN ISO 4033:2012                    | Hexagon high nuts (style 2) - Product grades A and B                                                                                                         |  |
|                                        |                                                                                                                                                              |  |

| DC EN ICO 4024-2012               | Have son very lev mute (et. de 1) Due duet eve de C                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN ISO 4034:2012               | Hexagon regular nuts (style 1) - Product grade C                                                                                             |
| BS EN ISO 898-3:2018<br>(A1:2021) | Fasteners - Mechanical properties of fasteners made of carbon steel and alloy steel - Part 3: Flat washers with specified property classes   |
| BS EN ISO 7091:2000               | Plain washers - Normal series - Product grade C                                                                                              |
| BS EN ISO 7092:2000               | Plain washers - Small series - Product grade A                                                                                               |
| BS EN ISO 7093-1:2000             | Plain washers - Large series - Product grade A                                                                                               |
| BS EN ISO 7093-2:2000             | Plain washers - Large series - Product grade C                                                                                               |
| BS EN ISO 7094:2000               | Plain washers - Extra large series - Product grade C                                                                                         |
|                                   |                                                                                                                                              |
| Preloaded assemblies              |                                                                                                                                              |
| BS EN 1993-1-8:2005               | Eurocode 3: Design of steel structures - Part 1-8: Design of joints                                                                          |
| BS EN 14399-1:2005                | High-strength structural bolting assemblies for preloading - Part 1: General requirements                                                    |
| BS EN 14399-2:2015                | High-strength structural bolting assemblies for preloading - Part 2: Suitability for preloading                                              |
| BS EN 14399-3:2015                | High-strength structural bolting assemblies for preloading - Part 3: System HR - Hexagon bolt and nut assemblies                             |
| BS EN 14399-4:2015                | High-strength structural bolting assemblies for preloading - Part 4: System HV - Hexagon bolt and nut assemblies                             |
| BS EN 14399-5:2015                | High-strength structural bolting assemblies for preloading - Part 5: Plain washers                                                           |
| BS EN 14399-6:2015                | High-strength structural bolting assemblies for preloading - Part 6: Plain chamfered washers                                                 |
| BS EN 14399-7:2018                | High-strength structural bolting assemblies for preloading - Part 7: System HR - Countersunk head bolt and nut assemblies                    |
| BS EN 14399-8:2018                | High-strength structural bolting assemblies for preloading- Part 8: System HV - Hexagon fit bolt and nut assemblies                          |
| BS EN 14399-9:2018                | High-strength structural bolting assemblies for preloading - Part 9: System HR or HV - Direct tension indicators for bolt and nut assemblies |
| BS EN 14399-10:2018               | High-strength structural bolting assemblies for preloading - Part 10: System HRC. Bolt and nut assemblies with calibrated preload            |

# **B.1.5** British/European specifications on welding consumables

| BS EN ISO 14174:2019 | Welding consumables - Fluxes for submerged arc welding and electroslag welding - Classification                                                                                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN ISO 636:2017   | Welding consumables - Rods, wires and deposits for tungsten inert gas welding of non-alloy and fine-grain steels - Classification                                                    |
| BS EN ISO 2560:2020  | Welding consumables - Covered electrodes for manual metal arc welding of non alloy and fine grain steels - Classification                                                            |
| BS EN ISO 14171:2016 | Welding consumables – Solid wires electrodes, tubular cored electrodes and electrode/flux combinations for submerged arc welding of non-alloy and fine grain steels – Classification |

| BS EN ISO 14341:2020              | Welding consumables - Wire electrodes and weld deposits for gas shielded metal arc welding of non alloy and fine grain steels - Classification                             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN ISO 14343:2017              | Welding consumables - Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels - Classification                            |
| BS EN ISO 15792-1: 2020           | Welding consumables - Test methods Part 1: Preparation of all-weld metal test pieces and specimens in steel, nickel and nickel alloys                                      |
| BS EN ISO 15792-2: 2020           | Welding consumables - Test methods Part 2: Preparation of single-<br>run and two-run technique test pieces and specimens in steel                                          |
| BS EN ISO 15792-3: 2011           | Welding consumables - Test methods - Part 3: Classification testing of positional capacity and root penetration of welding consumables in a fillet weld                    |
| BS EN ISO 16834:2012              | Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of high strength steels - Classification                                      |
| BS EN ISO 17632:2015              | Welding consumables - Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steels - Classification                 |
| BS EN ISO 17633:2018<br>(A1:2021) | Welding consumables – Tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels – Classification    |
| BS EN ISO 17634:2015              | Welding consumables - Tubular cored electrodes for gas shielded metal arc welding of creep-resisting steels - Classification                                               |
| BS EN ISO 18274:2010              | Welding consumables – Solid wire electrodes, solid strip electrodes, solid wires and solid rods for fusion welding of nickel and nickel alloys– Classification             |
| BS EN ISO 21952:2012              | Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of creep-resisting steels - Classification                                    |
| BS EN ISO 24373:2018              | Welding consumables - Solid wires and rods for fusion welding of copper and copper alloys - Classification                                                                 |
| BS EN ISO 24598:2019              | Welding consumables - Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of creep-resisting steels - Classification |
| BS EN ISO 26304:2018              | Welding consumables - Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels - Classification   |

# B.1.6 British/European specifications on strips for cold-formed profiled steel sheetings

| BS EN 10346:2015 | Continuously hot-dip coated steel flat products for cold forming - Technical delivery conditions |
|------------------|--------------------------------------------------------------------------------------------------|
| BS EN 10143:2006 | Continuously hot-dip coated steel sheet and strip - Tolerances on dimensions and shape           |

### **B.1.7** British/European specifications on stud connectors

BS EN ISO 13918:2018 Welding – Studs and ceramic ferrules for arc stud welding

(A1:2021)

BS EN ISO 898-1:2013 Mechanical properties of fasteners made of carbon steel and alloy steel –
Part 1: Bolts, screws and studs with specified property classes - Coarse
thread and fine pitch thread

### B.1.8 British/European specifications on material testing

| BS EN ISO 898-2        | Mechanical properties of fasteners made of carbon steel and alloy<br>steel - Part 2: Nuts with specified property classes - Coarse thread and<br>fine pitch thread                                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS EN ISO 148-1:2016   | Metallic materials - Charpy pendulum impact test - Part 1: Test method                                                                                                                                                                                            |
| BS EN ISO 2566-1:2021  | Steel - Conversion of elongation values - Part 1: Carbon and low-alloy steels                                                                                                                                                                                     |
| BS EN ISO 6506-1:2014  | Metallic materials - Brinell hardness test - Part 1: Test method                                                                                                                                                                                                  |
| BS EN ISO 6507-1:2018  | Metallic materials - Vickers hardness test - Part 1: Test method                                                                                                                                                                                                  |
| BS EN ISO 6508-1:2016  | Metallic materials - Rockwell hardness test - Part 1: Test method                                                                                                                                                                                                 |
| BS EN ISO 6892-1:2019  | Metallic materials - Tensile testing Part 1: Method of test at room temperature                                                                                                                                                                                   |
| BS EN ISO 8501-1:2007  | Preparation of steel substrates before application of paints and related products — Visual assessment of surface cleanliness — Rust grades and preparation grades of uncoated steel substrates and of steel substrates after overall removal of previous coatings |
| BS EN ISO 14284:2002   | Steel and iron - Sampling and preparation of samples for the determination of chemical composition                                                                                                                                                                |
| BS EN ISO 15792-1:2020 | Welding consumables - Test methods - Part 1: Preparation of all-weld metal test pieces and specimens in steel, nickel and nickel alloys                                                                                                                           |

### **B.1.9** British/European specifications on inspection documents

| BS EN 10168:2004<br>(R2019) | Steel products - Inspection documents - List of information and description |
|-----------------------------|-----------------------------------------------------------------------------|
| BS EN 10204:2004            | Metallic products - Types of inspection documents                           |

### **B.2** American specifications

The following American specifications are published by the American Institute of Steel Construction, Chicago, Illinois; the American Petroleum Institute, Washington, D.B.; the American Society for Testing and Materials, West Conshohocken, Pennsylvania; the American Welding Society, Miami, Florida, United States of America.

### **B.2.1** American specifications on design of steel structures

AISC 303:2016 Code of Standard Practice for Steel Buildings and Bridges

AISC 360:2016 Specification for Structural Steel Buildings

### **B.2.2** American specifications on steel materials

| API SPEC 5L:2018       | Line Pipe                                                                                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASTM A36/A36M:2019     | Standard Specification for Carbon Structural Steel                                                                                                     |
| ASTM A53:2020          | Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless                                                         |
| ASTM A109:2016 (R2018) | Standard Specification for Steel, Strip, Carbon (0.25 Maximum Percent), Cold-Rolled                                                                    |
| ASTM A242:2013 (R2018) | Standard Specification for High-Strength Low-Alloy Structural Steel                                                                                    |
| ASTM A268:2020         | Standard Specification for Seamless and Welded Ferritic and<br>Martensitic Stainless Steel Tubing for General Service                                  |
| ASTM A283:2018         | Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates                                                                   |
| ASTM A328:2013 (R2018) | Standard Specification for Steel Sheet Piling                                                                                                          |
| ASTM A333:2018         | Standard Specification for Seamless and Welded Steel Pipe for Low-<br>Temperature Service and Other Applications with Required Notch<br>Toughness      |
| ASTM A423:2019         | Standard Specification for Seamless and Electric-Welded Low-Alloy Steel Tubes                                                                          |
| ASTM A500:2021         | Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes                                         |
| ASTM A501:2021         | Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing                                                               |
| ASTM A514:2018 (E2019) | Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding                                          |
| ASTM A529:2019         | Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality                                                                  |
| ASTM A572:2021         | Standard Specification for High-Strength Low-Alloy Columbium-<br>Vanadium Structural Steel                                                             |
| ASTM A573:2020         | Standard Specification for Structural Carbon Steel Plates                                                                                              |
| ASTM A588:2019         | Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance |

| ASTM A595:2018         | Standard Specification for Steel Tubes, Low-Carbon or High-Strength Low-Alloy, Tapered for Structural Use                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASTM A606:2018         | Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot- Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance                                                        |
| ASTM A618:2021         | Standard Specification for Hot-Formed Welded and Seamless High-<br>Strength Low-Alloy Structural Tubing                                                                                                         |
| ASTM A653:2020         | Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process                                                                                |
| ASTM A673:2017         | Standard Specification for Sampling Procedure for Impact Testing of Structural Steel                                                                                                                            |
| ASTM A709:2021         | Standard Specification for Structural Steel for Bridges                                                                                                                                                         |
| ASTM A792:2021         | Standard Specification for Steel Sheet, 55 % Aluminum-Zinc Alloy-Coated by the Hot-Dip Process                                                                                                                  |
| ASTM A847:2021         | Standard Specification for Cold-Formed Welded and Seamless High-<br>Strength, Low- Alloy Structural Tubing with Improved Atmospheric<br>Corrosion Resistance                                                    |
| ASTM A857:2019         | Standard Specification for Steel Sheet Piling, Cold Formed, Light Gage                                                                                                                                          |
| ASTM A871:2020         | Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Atmospheric Corrosion Resistance                                                                                                 |
| ASTM A875:2021         | Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-<br>Coated by the Hot-Dip Process                                                                                                               |
| ASTM A913:2019         | Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)                                                                   |
| ASTM A945:2016 (R2021) | Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness                                            |
| ASTM A992:2020         | Standard Specification for Structural Steel Shapes                                                                                                                                                              |
| ASTM A1003:2015        | Standard Specification for Steel Sheet, Carbon, Metallic- and Nonmetallic-Coated for Cold-Formed Framing Members                                                                                                |
| ASTM A1008:2021        | Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Required Hardness, Solution Hardened, and Bake Hardenable |
| ASTM A1011:2018        | Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High- Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength                         |
| ASTM A1046:2019        | Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process                                                                                                             |
| ASTM A1066:2022        | Standard Specification for High-Strength Low Alloy Structural Steel Plate Produced by Thermo-Mechanical Controlled Process (TMCP)                                                                               |

#### **B.2.3** American specifications on dimensions and shapes

ASTM A6:2021 Standard Specification for General Requirements for Rolled Structural

Steel Bars, Plates, Shapes, and Sheet Piling

ASTM A450:2021 Standard Specification for General Requirements for Carbon and Low

Alloy Steel Tubes

ASTM A568 REV A:2019 Standard Specification for Steel, Sheet, Carbon, Structural, and High-

Strength, Low- Alloy, Hot-Rolled and Cold-Rolled, General Requirements

for

ASTM A924 -2022 Standard Specification for General Requirements for Steel Sheet,

Metallic- Coated by the Hot-Dip Process

ASTM A999:2018 Standard Specification for General Requirements for Alloy and Stainless

Steel Pipe

#### B.2.4 American specifications on bolting assemblies

Non-preloaded assemblies

ASTM A193:2020 Standard Specification for Alloy-Steel and Stainless Steel Bolting for High

Temperature or High Pressure Service and Other Special Purpose

**Applications** 

ASTM A194 REV A:2020 Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High

Pressure or High Temperature Service, or Both

ASTM A307:2021 Standard Specification for Carbon Steel Bolts and Studs, 60 000 psi

Tensile Strength

ASTM F3125:2021 Standard Specification for High Strength Structural Bolts and

Assemblies, Steel and Alloy Steel, Heat Treated, 120 ksi and 150 ksi (830

MPa and 1040 MPa) Minimum Tensile Strength

ASTM A354:2017 Standard Specification for Quenched and Tempered Alloy Steel Bolts,

(E2017) (E2018) Studs, and Other Externally Threaded Fasteners

ASTM A449:2014 Standard Specification for Hex Cap Screws, Bolts and Studs, Steel, Heat

(R2020) Treated, 120/105/90 ksi Minimum Tensile Strength, General Use

ASTM A563 REV A:2021 Standard Specification for Carbon and Alloy Steel Nuts

ASTM F436:2019 Standard Specification for Hardened Steel Washers

Preloaded assemblies

ASTM A193:2020 Standard Specification for Alloy-Steel and Stainless Steel Bolting

Materials for High Temperature or High Pressure Service and Other

**Special Purpose Applications** 

ASTM A194 REV A:2020 Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel

Nuts for Bolts for High Pressure or High Temperature Service, or Both

ASTM A354:2017 Standard Specification for Quenched and Tempered Alloy Steel Bolts,

(E2017) (E2018) Studs, and Other Externally Threaded Fasteners

ASTM A563 REV A:2021 Standard Specification for Carbon and Alloy Steel Nuts

ASTM F436:2019 Standard Specification for Hardened Steel Washers

Indicators for Use with Structural Fasteners

### **B.2.5** American specifications on welding consumables

| AWS D1.3:2018  | Structural welding code – Sheet steel                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| AWS A5.1:2012  | Specification for Carbon Steel Electrodes for Shielded Metal ArcWelding                                                                          |
| AWS A5.9:2017  | Welding Consumables — Wire Electrodes, Strip Electrodes, Wires, and Rods for Arc Welding of Stainless and Heat Resisting Steels — Classification |
| AWS A5.29:2012 | Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding                                                                          |

### **B.2.6** American specifications on strips cold-formed profiled sheetings

| ASTM A606:2018  | Standard Specification for Steel, Sheet and Strip, High-Strength, Low-                              |
|-----------------|-----------------------------------------------------------------------------------------------------|
|                 | Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric                                        |
|                 | Corrosion Resistance                                                                                |
| ASTM A653:2020  | Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-                           |
|                 | Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process                                             |
| ASTM A1046:2019 | Standard Specification for Steel Sheet, Zinc-Aluminum-Magnesium Alloy-Coated by the Hot-Dip Process |

# American specifications on shear connectors

**B.2.7** 

| ASTM A29:2020 | Standard Specification for General Requirements for Steel Bars, Carbon |
|---------------|------------------------------------------------------------------------|
|               | and Alloy, Hot-Wrought                                                 |
| AWS D1.1:2020 | Structural Welding Code-steel                                          |

### **B.3** Japanese specifications

The following Japanese specifications are published by the Japan Society of Civil Engineers, the Architectural Institute of Japan, Japanese Society of Steel Construction and the Japanese Standards Association, Tokyo, Japan.

### **B.3.1** Japanese specifications on design of steel structures

JASS 6: 2007 Structural Steelwork Specification for Building Construction

AlJ Design Standard for Steel Structures - Based on Allowable Stress Concept - (2005 Edition)

JSCE - Standard Specifications for Steel and Composite Structures(First Edition, 2009)

#### **B.3.2** Japanese specifications on steel materials

| JIS A 5523:2021             | Weldable hot-rolled steel sheet piles                                     |
|-----------------------------|---------------------------------------------------------------------------|
| JIS A 5525:2019             | Steel pipe piles                                                          |
| JIS A 5528:2021             | Hot rolled steel sheet piles                                              |
| JIS A 5530:2019             | Steel pipe sheet piles                                                    |
| JIS G 3101:2020             | Rolled steels for general structure                                       |
| JIS G 3106:2020             | Rolled steels for welded structure                                        |
| JIS G 3114:2022             | Hot-rolled atmospheric corrosion resisting steels for welded structure    |
| JIS G 3128:2021             | High yield strength steel plates for welded structure                     |
| JIS G 3131:2018             | Hot-rolled mild steel plates, sheet and strip                             |
| JIS G 3132:2018             | Hot-rolled carbon steel strip for pipes and tubes                         |
| JIS G 3136:2022             | Rolled steels for building structure                                      |
| JIS G 3302:2019             | Hot-dip zinc-coated steel sheet and strip                                 |
| JIS G 3312:2019             | Prepainted hot-dip zinc-coated steel sheet and strip                      |
| JIS G 3321:2019             | Hot-dip 55 % aluminium-zinc alloy-coated steel sheet and strip            |
| JIS G 3322:2019             | Prepainted hot-dip 55 % aluminium-zinc alloy-coated steel sheet and strip |
| JIS G 3350:2021             | Light gauge sections for general structure                                |
| JIS G 3352:2014<br>(R 2019) | Steel decks                                                               |
| JIS G 3444:2021             | Carbon steel tubes for general structure                                  |
| JIS G 3466:2021             | Carbon steel square and rectangular tubes for general structure           |
| JIS G 3475:2021             | Carbon steel tubes for building structure                                 |

# **B.3.3** Japanese specifications on dimensions and shapes

| JIS G 3191:2022 | Dimensions, mass, shape and permissible variations of hot rolled steel bars and bar in coil      |
|-----------------|--------------------------------------------------------------------------------------------------|
| JIS G 3192:2021 | Dimensions, shape, mass and permissible variations of hot rolled steel sections                  |
| JIS G 3193:2019 | Dimensions, shape, mass and permissible variations of hot rolled steel plates, sheets and strips |
| JIS G 3194:2020 | Dimensions, shape, mass and permissible variations of hot rolled flat steel                      |

### **B.3.4** Japanese specifications on bolting assemblies

#### Non-preloaded assemblies

| JIS B 1051:2014<br>(R 2019)       | Mechanical properties of fasteners made of carbon steel and alloy steel - Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JIS B 1052-2:2014                 | Mechanical properties of fasteners made of carbon steel and alloy steel - Part 2: Nuts with specified property classes - Coarse thread and fine pitch thread            |
| JIS B 1180:2014<br>(R 2019)       | Hexagon head bolts and hexagon head screws                                                                                                                              |
| JIS B 1181:2014<br>(R 2019)       | Hexagon nuts and hexagon thin nuts                                                                                                                                      |
| JIS B 1256:2008<br>(R2012)(R2017) | Plain washers                                                                                                                                                           |
| Preloaded assemblies              |                                                                                                                                                                         |
| JIS B 1186:2013<br>(R2018)        | Sets of high strength hexagon bolt, hexagon nut and plain washers for friction grip joints                                                                              |
| JSS II-09:2015                    | Sets of torshear type high strength bolt, hexagon nut and plain washers for structural joints                                                                           |

### **B.3.5** Japanese specifications on welding consumables

| JIS Z 3200:2005<br>(R2009)(R2014)<br>(R2019) | Welding consumables – Technical delivery conditions for welding filler materials – Type of product, dimensions, tolerances and markings    |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| JIS Z 3211:2008<br>(R2013)(R2018)            | Covered electrodes for mild steel, high tensile strength steel and low temperature service steel                                           |
| JIS Z 3313:2009<br>(R2013)(R2018)            | Flux cored wires for gas shielded and self-shielded metal arc welding of mild steel, high strength steel and low temperature service steel |

### **B.3.6** Japanese specifications on strips for cold-formed profiled sheetings

| JIS G 3302:2019 | Hot-dip zinc-coated steel sheet and strip                      |
|-----------------|----------------------------------------------------------------|
| JIS G 3317:2019 | Hot-dip zinc-5% aluminium alloy-coated steel sheet and strip   |
| JIS G 3321:2019 | Hot-dip 55 % aluminium-zinc alloy-coated steel sheet and strip |

### **B.3.7** Japanese specifications on stud connectors

| leaded studs |
|--------------|
|              |
|              |

### **B.4** Australian/New Zealand specifications

The following Australian/New Zealand specifications are published by Standards Australia, Sydney, Australia; Standards New Zealand, Wellington, New Zealand.

#### B.4.1 Australian/New Zealand specifications on design of steel structures

AS 4100:2020 Steel structures

AS/NZS 4600: 2018 Cold-formed steel structures

### **B.4.2** Australian/New Zealand specifications on steel materials

| AS/NZS 1163:2016   | Cold-formed structural steel hollow sections                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| AS 1397:2021       | Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinc and zinc alloyed with aluminium and magnesium |
| AS 1548:2008       | Fine grained, weldable steel plates for pressure equipment (Reconfirmed 2018)                                             |
| AS/NZS 1594:2002   | Hot-rolled steel flat products                                                                                            |
| AS/NZS 1595:1998   | Cold-rolled, unalloyed, steel sheet and strip (Amendment 2014)                                                            |
| AS/NZS 3678:2016   | Structural steel – hot-rolled plates, floor plates and slabs (Amendment 2017)                                             |
| AS/NZS 3679.1:2016 | Structural steel – Part 1: Hot-rolled bars and sections                                                                   |

### **B.4.3** Australian/New Zealand specifications on dimensions and shapes

| AS/NZS 1365-1996   | Tolerances for Flat-Rolled Steel Products (Amendment 2014)                    |
|--------------------|-------------------------------------------------------------------------------|
| AS 1548:2008       | Fine grained, weldable steel plates for pressure equipment (Reconfirmed 2018) |
| AS/NZS 3679.1:2016 | Structural steel – Part 1: Hot-rolled bars and sections                       |

### **B.4.4** Australian/New Zealand specifications on bolting assemblies

| AS 1110.1:2015 | SO metric hexagon bolts and screws - Product grades A and B Screws                              |
|----------------|-------------------------------------------------------------------------------------------------|
| AS 1110.2:2015 | ISO metric hexagon bolts and screws - Product grades A and B Bolts                              |
| AS 1111.1:2015 | ISO metric hexagon bolts and screws - Product grade C Bolts                                     |
| AS 1111.2:2015 | ISO metric hexagon bolts and screws - Product grade C Screws                                    |
| AS 1112.1:2015 | ISO metric hexagon nuts Style 1 - Product grades A and B                                        |
| AS 1112.2:2015 | ISO metric hexagon nuts Style 2 - Product grades A and B                                        |
| AS 1112.3:2015 | ISO metric hexagon nuts Product grade C                                                         |
| AS 1112.4:2015 | ISO metric hexagon nuts Chamfered thin nuts - Product grades A and B                            |
| AS 4291.1:2015 | Mechanical properties of fasteners made of carbon steel and alloy steel Bolts, screws and studs |

| AS/NZS 1252.1:2016 | High-strength steel fastener assemblies for structural engineering - Bolts, nuts and washers Part 1: Technical requirements                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AS/NZS 1252.2:2016 | High-strength steel fastener assemblies for structural engineering- Bolts, nuts and washers Part 2: Verification testing for bolt assemblies                     |
| AS/NZS 1559:1997   | Hot-Dip Galvanized Steel Bolts and Associated Nuts and Washers for Tower Construction                                                                            |
| AS/NZS 4291.2:2016 | Mechanical properties of fasteners made of carbon steel and alloy steel<br>Part 2: Nuts with specified property classes - Coarse thread and fine<br>pitch thread |

### **B.4.5** Australian/New Zealand specifications on welding consumables

| AS/NZS 1554.1:2014    | Structural steel welding Part 1: Welding of steel structures (Amendment 2015 and 2017)                                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AS/NZS ISO 14171:2013 | Welding consumables - Solid wire electrodes, tubular cored electrodes and electrode/flux combinations for submerged arc welding of non alloy and fine grain steels - Classification |
| AS/NZS ISO 14174:2013 | Welding consumables - Fluxes for submerged arc welding and electroslag welding - Classification                                                                                     |
| AS/NZS 4855:2007      | Welding consumables—Covered electrodes for manual metal arc welding of non-alloy and fine grain steels— Classification                                                              |
| AS/NZS 4857:2006      | Welding consumables Covered electrodes for manual metal arc welding of high-strength steels Classification                                                                          |
| AS/NZS 1167.2:1999    | Welding and Brazing - Filler Metals Part 2: Filler Metal for Welding                                                                                                                |
| AS/NZS 14341:2012     | Welding consumables - Wire electrodes and weld deposits for gas shielded metal arc welding of non alloy and fine grain steels - Classification (ISO 14341:2010, MOD)                |
| AS/NZS 16834:2013     | Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of high strength steels — Classification (ISO 16834:2012, MOD)                         |
| AS/NZS 21952:2012     | Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of creep-resisting steels - Classification (ISO 21952:2012, MOD)                       |

# **B.4.6** Australian/New Zealand specifications on strips for cold-formed profiled sheetings

| AS 1397:2021 | Continuous hot-dip metallic coated steel sheet and strip - Coatings of |
|--------------|------------------------------------------------------------------------|
|              | zinc and zinc alloyed with aluminium and magnesium                     |

### **B.4.7** Australian/New Zealand specifications on stud connectors

| AS/NZS 1554.2:2003 | Structural s | steel | welding | Part | 2: | Stud | welding | (steel | studs | to | steel) |
|--------------------|--------------|-------|---------|------|----|------|---------|--------|-------|----|--------|
|                    | (Amendmer    | nt 20 | 03)     |      |    |      |         |        |       |    |        |

### **B.5** Chinese specifications

The following Chinese specifications are published by the Standardization Administration of China, Beijing, People's Republic of China.

### **B.5.1** Chinese specifications on design of steel structures

| GB 50017:2017 | Standard for design of steel structures                                    |
|---------------|----------------------------------------------------------------------------|
| GB 50018:2002 | Technical code of cold-formed thin-wall steel structures                   |
| GB 50661:2011 | Code for welding of steel structure                                        |
| JGJ 82:2011   | Technical specification high strength bolt connections of steel structures |
| GB 50661:2011 | Code for welding of steel structures                                       |

### **B.5.2** Chinese specifications on steel materials

| GB/T 700:2006     | Carbon structural steels                                                                                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| GB/T 1591:2018    | High strength low alloy structural steels                                                                                            |
| GB/T 3274:2017    | Hot-rolled plates and strips and strips of carbon structural steels and high strength low alloy structural steels                    |
| GB/T 4171:2008    | Atmospheric corrosion resisting structural steel                                                                                     |
| GB/T 5313:2010    | Steel plate with through-thickness characteristics                                                                                   |
| GB/T 6725:2017    | General requirements of cold forming steel sections                                                                                  |
| GB/T 8162:2018    | Seamless steel tubes for structural purposes                                                                                         |
| GB/T 13304.1:2008 | Steels classification – Part 1: Classification of according to chemical composition                                                  |
| GB/T 13304.2:2008 | Steels classification – Part 2: Classification of according to main quality classes and main property or application characteristics |
| GB/T 15574:2016   | Steel products classification                                                                                                        |
| GB/T 19879:2015   | Steel plate for building structures                                                                                                  |
| GB/T 20933:2021   | Hot rolled sheet pile                                                                                                                |
| YB 4104:2000      | Steel plates for high rise building structure                                                                                        |
| GB/T 16270-2009   | High strength structural steel plates in the quenched and tempered condition                                                         |

# **B.5.3** Chinese specifications on dimensions and shapes

| GB/T 702:2017   | Hot-rolled steel bars – Dimensions, shape, weight and tolerances                             |
|-----------------|----------------------------------------------------------------------------------------------|
| GB/T 706:2016   | Hot-rolled section steel                                                                     |
| GB/T 709:2019   | Dimension, shape, weight and tolerances for hot-rolled steel strip, plate and sheet          |
| GB/T 6728:2017  | Cold forming hollow sectional steel for general structure                                    |
| GB/T 11263:2017 | Hot-rolled H and cut T section steel                                                         |
| GB/T 17395:2008 | Dimensions, shapes, masses, and tolerances of seamless steel tubes                           |
| GB/T 25052:2010 | Continuously hot-dip coated steel sheet and strip Tolerances on dimensions, shape and weight |

### **B.5.4** Chinese specifications on bolting assemblies

| , | chinese specifications on boiting assemblies |                                                              |  |  |
|---|----------------------------------------------|--------------------------------------------------------------|--|--|
|   | General information                          |                                                              |  |  |
|   | GB/T 3098.1:2010                             | Mechanical properties of fasteners – Bolts, screws and studs |  |  |
|   | GB/T 3098.2:2015                             | Mechanical properties of fasteners – Nuts                    |  |  |
|   | Materials                                    |                                                              |  |  |
|   | GB/T 699:2015                                | Quality carbon structure steels                              |  |  |
|   | GB/T 3077:2015                               | Alloy structure steels                                       |  |  |
|   | GB/T 6478:2015                               | Steels for cold heading and cold extruding                   |  |  |
|   |                                              |                                                              |  |  |
|   | Non-preloaded assemblies                     |                                                              |  |  |
|   | GB/T 41:2016                                 | Hexagon nuts, style 1 – Product grade C                      |  |  |
|   | GB/T 95:2002                                 | Plain washers – Product grade C                              |  |  |
|   | GB/T 5780:2016                               | Hexagon head bolts – Product grade C                         |  |  |
|   | GB/T 5781:2016                               | Hexagon head bolts – Full thread – Product grade C           |  |  |
|   | GB/T 5782:2016                               | Hexagon head bolts                                           |  |  |
|   | GB/T 5783:2016                               | Hexagon head bolts – Full thread                             |  |  |
|   | GB/T 6170:2015                               | Hexagon nuts, style 1                                        |  |  |
|   | GB/T 6175:2016                               | Hexagon nuts, style 2                                        |  |  |

| GB/1 61/5:2016       | Hexagon nuts, style 2                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Preloaded assemblies |                                                                                                                       |
| GB/T 1228:2006       | High strength bolts with large hexagon head for steel structures                                                      |
| GB/T 1229:2006       | High strength large hexagon nuts for steel structures                                                                 |
| GB/T 1230:2006       | High strength plain washers for steel structures                                                                      |
| GB/T 1231:2006       | Specifications of high strength bolts with large hexagon head, large hexagon nuts, plain washers for steel structures |
| GB/T 3632:2008       | Sets of torshear type high strength bolt hexagon nut and plain washer for steel structures                            |

### **B.5.5** Chinese specifications on welding consumables

| GB/T 3429:2015  | Wire rods for welding                                                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| GB/T 5117:2012  | Covered electrodes for manual metal arc welding of non-alloy and fine grain steels                                                           |
| GB/T 5118:2012  | Covered electrodes for manual metal arc welding of creep-resisting steels                                                                    |
| GB/T 5293:2018  | Solid wire electrodes, tubular cored electrodes and electrode/flux combinations for submerged arc welding of non alloy and fine grain steels |
| GB/T 8110:2020  | Wire electrodes and weld deposits for gas shielded metal arc welding of non alloy and fine grain steels                                      |
| GB/T 10045:2018 | Tubular cored electrodes for non-alloy and fine grain steels                                                                                 |
| GB/T 12470:2018 | Solid wire electrodes, tubular cored electrodes and electrode/flux combinations for submerged arc welding of creep-resisting steels          |
| GB/T 14957:1994 | Steel wires for melt welding                                                                                                                 |
| GB/T 14981:2009 | Dimension, shape, mass and tolerance for hot-rolled round wire rod                                                                           |
| GB/T 17493:2018 | Tubular cored electrodes for creep-resisting steels                                                                                          |

### **B.5.6** Chinese specifications on strips for cold-formed profiled sheetings

| GB/T 2518:2019  | Continuously hot-dip zinc and zinc alloy coated steel sheet and strip |
|-----------------|-----------------------------------------------------------------------|
| GB/T 12755:2008 | Profiled steel sheet for building                                     |

### **B.5.7** Chinese specifications on stud connectors

GB/T 10433:2002 Cheese head studs for arc stud welding

### **B.6** Russian specifications

The following Russian standards are published by Russian Scientific-Technical Information Centre for Standardization, Metrology and Conformity Assessment, Moscow, Russian; Ministry of Regional Development of the Russian Federation, Moscow, Russian; Ministry of Construction, Housing and Utilities of the Russian Federation, Moscow, Russian.

#### **B.6.1** Russian specifications on design of steel structures

SP 16.13330.2011 Steel Structures - the Updated Edition of SNiP II-23-81
SP 260.1325800.2016 Cold-formed thin-walled steel profile and galvanized corrugated plate constructions. Design rules
GOST 23118-2012 Building steel structures. General specifications

#### **B.6.2** Russian specifications on steel materials

| GOST 380-2005     | Common quality carbon steel. Grades                                                                              |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| GOST 535-2005     | Common quality carbon steel bar and shaped sections. General specifications                                      |
| GOST 1050-2013    | Metal products from nonalloyed structural quality and special steels.<br>General specification                   |
| GOST 1577-93      | Rolled sheets and wide strips of structural quality steel. Specifications                                        |
| GOST 2284-79      | Cold-rolled carbon structural steel strip. Specifications                                                        |
| GOST 4543-71      | Structural alloy steel bars. Specifications                                                                      |
| GOST 4781-85      | Hot-rolled steel shapes for sheet piles. Specifications                                                          |
| GOST 8731-74      | Seamless hot-deformed steel pipes. Specifications                                                                |
| GOST 10705-80     | Electrically welded steel tubes. Specifications                                                                  |
| GOST 10706-76     | Electrically welded steel line-weld tubes. Technical requirements                                                |
| GOST 11268-76     | Alloyed structural high-grade rolled steel sheets for special purposes. Specifications                           |
| GOST 11269-76     | Alloyed universal structural high-grade rolled steel plates and wide strips for special purposes. Specifications |
| GOST 11474-76     | Bent-steel sections. Specification                                                                               |
| GOST 14637-89     | Rolled plate from carbon steel of general quality. Specifications                                                |
| GOST 19281-2014   | High strength rolled steel. General specification                                                                |
| GOST 27772-2015   | Rolled products for steel structural elements. General specifications                                            |
| GOST 30245-2003   | Steel bent closed welded square and rectangular section for building. Specification                              |
| GOST 53629-2009   | Sheet piles of steel cold-formed sections. Specifications                                                        |
| GOST R 54864-2016 | Hot-deformed seamless steel pipes for the welded steel structures. Specifications                                |

### **B.6.3** Russian specifications on dimensions and shapes

| GOST 103-2006   | Hot-rolled steel strip. Dimensions                                                                       |
|-----------------|----------------------------------------------------------------------------------------------------------|
| GOST 2590-2006  | Round hot-rolled steel bars. Dimensions                                                                  |
| GOST 2591-2006  | Square hot-rolled steel bars. Dimensions                                                                 |
| GOST 4781-85    | Hot-rolled steel shapes for sheet piles. Specifications                                                  |
| GOST 7511-73    | Steel sections for window and lantern transoms and window panels of industrial buildings. Specifications |
| GOST 8239-89    | Hot-rolled steel flange beams. Rolling products                                                          |
| GOST 8240-97    | Hot-rolled steel channels. Assortment                                                                    |
| GOST 8278-83    | Roll-formed steel channels. Dimensions                                                                   |
| GOST 8281-80    | Steel roll-formed unequal channels. Dimensions                                                           |
| GOST 8282-83    | Bent-steel C-shaped equai flange sections. Dimensions                                                    |
| GOST 8283-93    | Bent steel hat equal sections. Dimensions                                                                |
| GOST 8509-93    | Hot-rolled steel equal-leg angles. Dimensions                                                            |
| GOST 8510-86    | Hot-rolled steel unequal-leg angles. Dimensions                                                          |
| GOST 8732-78    | Seamless hot-deformed steel pipes. Range of sizes                                                        |
| GOST 9576-75    | Precision steel tubes. Range                                                                             |
| GOST 10704-91   | Electrically welded steel line-weld lubes. Range                                                         |
| GOST 13229-78   | Steel bent Z-shaped sections. Dimensions                                                                 |
| GOST 19771-93   | Roll-formed steel equal leg angles. Dimensions                                                           |
| GOST 19772-93   | Roll-formed steel unequal les angles. Dimensions                                                         |
| GOST 19903-2015 | Hot-rolled steel sheets. Dimensions                                                                      |
| GOST 19904-90   | Cold-rolled steel sheets. Dimensions                                                                     |
| GOST 26020-83   | Hot-rolled steel I-beam with parallel flange edges. Dimensions                                           |
| GOST 30245-2003 | Steel bent closed welded square and rectangular section for building. Specifications                     |
| GOST 32528-2013 | Hot-deformed seamless steel pipes. Specifications                                                        |
| GOST 53629-2009 | Sheet piles of steel cold-formed sections. Specifications                                                |
|                 |                                                                                                          |

# **B.6.4** Russian specifications on bolting assemblies

| General information   |                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOST 1759.0-87        | Bolts, screws, studs and nuts. Specifications                                                                                                                      |
| GOST 18123-82         | Washers. General specifications                                                                                                                                    |
| GOST 18126-94         | Bolts and nuts with thread diameter over 48 mm. General specifications                                                                                             |
| GOST R 52643-2006     | High-strength screws and nuts washers for metal structures. General specifications                                                                                 |
| GOST R ISO 898-1-2014 | Mechanical properties of fasteners made of carbon and alloyed steels. Part 1: Bolts, screws and studs with specified property classes large and small thread pitch |
| GOST R ISO 898-2-2013 | Mechanical properties of fasteners made of carbon and alloyed steels. Part 2: Nuts with specified property classes large and small thread pitch                    |

### Non-preloaded assemblies

| GOST 6402-70         | Lock washers. Specifications                                                                                 |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| GOST 7805-70         | Hexagon bolts, product grade A. Construction and dimensions                                                  |  |  |  |
| GOST 7798-70         | Hexagon bolts, product grade B. Construction and dimensions                                                  |  |  |  |
| GOST 10602-94        | Hexagon head bolts with thread diameter over 48 mm. Product grade B. Specifications                          |  |  |  |
| GOST 10605-94        | Hexagon nuts with thread diameter over 48 mm. Product grade B. Specifications                                |  |  |  |
| GOST 10906-78        | Square taper washers. Specifications                                                                         |  |  |  |
| GOST 11371-78        | Washers. Specifications                                                                                      |  |  |  |
| GOST 11850-72        | Steel wire for spring washers. Specifications                                                                |  |  |  |
| GOST ISO 4032-2014   | Hexagon regular nuts (style 1). Product grades A and B                                                       |  |  |  |
| GOST ISO 8673-2014   | Hexagon regular nuts (style 1) with fine pitch thread. Product grades A and B                                |  |  |  |
| Preloaded assemblies |                                                                                                              |  |  |  |
| GOST R 52644-2006    | High-strength bolt with a hexagonal head with the increased size of turnkey metal structures. specifications |  |  |  |
| GOST R 52645-2006    | Hexagon nuts for high-strength structural bolting with large width across flats. Specifications              |  |  |  |
| GOST R 52646-2006    | Washers for high-strength bolts metal structures. Specifications                                             |  |  |  |

### **B.6.5** Russian specifications on welding consumables

| GOST | 2246-70   | Welding steel wire. Specifications                                                                                |  |  |
|------|-----------|-------------------------------------------------------------------------------------------------------------------|--|--|
| GOST | 9087-81   | Welding melted fluxes. Specifications                                                                             |  |  |
| GOST | 9467-75   | Metal covered electrodes for manual arc welding of structural and heat-resistant steels. Types                    |  |  |
| GOST | 26101-84  | Welding powder wire. Specifications                                                                               |  |  |
| GOST | 26271-84  | Flux-cored wire welding carbon and low-alloy steels. General specifications                                       |  |  |
| GOST | 5.1215-72 | Metal arc welding electrodes of mark AHO-4 for mild structural steel. Quality requirements for certified products |  |  |

### **B.6.6** Russian specifications on strips for cold-formed profiled steel sheetings

| GOST 16523-97     | Rolled sheets from quality and ordinary carbon steel for purposes. Specifications |
|-------------------|-----------------------------------------------------------------------------------|
| GOST 17066-94     | Rolled sheet of high-strength steel. Specifications                               |
| GOST 19903-2015   | Hot-rolled steel sheets. Dimensions                                               |
| GOST 19904-90     | Cold-rolled steel sheets. Dimensions                                              |
| GOST R 52246-2004 | Hot-dip zinc-coated steel sheet. Specifications                                   |

### **B.6.7** Russian specifications on stud connectors

| GOST 1759.0-87        | Bolts, screws, studs and nuts. Specifications                             |
|-----------------------|---------------------------------------------------------------------------|
| GOST R ISO 898-1-2014 | Mechanical properties of fasteners made of carbon and alloyed steels.     |
|                       | Part 1: Bolts, screws and studs with specified property classes large and |
|                       | small thread pitch                                                        |

### Appendix C Quality control practices adopted by regulatory authorities

- C.1 Quality control practice in Australia and New Zealand
- C.2 Quality control practice in Hong Kong
- C.3 Quality control practice in Macau
- C.4 Quality control practice in Malaysia
- C.5 Quality control practice in Singapore

### Appendix C Quality control practice adopted by regulatory authorities

This Appendix provides brief descriptions of the quality assurance practices on the use of equivalent steel materials adopted by the following countries and cities:

- a) Australia and New Zealand
- b) Hong Kong,
- c) Macau,
- d) Malaysia, and
- e) Singapore

It should be noted that full details of the operational procedures of these quality assurance systems may be found in the latest version of the local codes of practice and specifications.

#### C.1 Quality control practice in Australia and New Zealand

In Australia and New Zealand, structural engineers are the professionals responsible to ensure that civil and building structures as erected comply with AS 4100 and NZS 3404, and therefore comply with the Building Code of Australia and the New Zealand Building Code, respectively. They are required to issue a certificate indicating such compliance. The form of this certificate may be dictated by the Principal Certifying Authority or may be of a form decided by the certificate provider. The compliance involves the following steps:

- (1) Ensuring that the materials used conform to those used in design, which means the materials comply with Section 2 'Materials' of AS 4100 and NZS 3404;
- (2) Ensuring that the fabrication complies with Section 14 'Fabrication' of AS 4100 and NZS 3404;
- (3) Ensuring that the erected structure complies with Section 15 'Erection' of AS 4100 and NZS 3404.

In general, the quality of steel materials should be controlled by the following means:

- (a) In-line marking at the time of manufacture which allows the product to be inspected and its provenance checked;
- (b) Test reports or certificates providing results from tests performed by a laboratory accredited by signatories to the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA) on behalf of the manufacturer, which allows the actual test values for a heat to be compared against the requirements of the relevant Standard. The appropriate logo or further details of the ILAC (MRA) signatory shall be noted on the document. [N.B. ILAC MRA accredited bodies include: in Australia, the National Association of Testing Authorities (NATA); and, in New Zealand, the International Accreditation New Zealand (IANZ)].

Mandatory information of the following test results include:

- Product, testing specification and grade, e.g. AS/NZS 3679.1—350 Grade
- Product steelmaking process, e.g. Basic oxygen—Slab cast
- Heat number (from casting).
- Mechanical properties—Tensile tests: Yield stress, tensile strength and percentage elongation.
- Chemical analysis type, e.g. cast analysis 'L' or product 'P'
- Chemical composition of Carbon (C), Phosphorus (P), Manganese (Mn), Silicon (Si), Sulphur (S), Chromium (Cr), Molybdenum (Mo), Vanadium (V), Nickel (Ni), Copper (Cu), Aluminium (Al), Titanium (Ti), Niobium (Nb), Carbon Equivalence Value (CEV) and any element intentionally added.

• Impact test results at the specified test temperature for low temperature and seismic grades (LO and SO Grades).

In addition, the Australasian Certification Authority for Reinforcing and Structural Steels (ACRS) is a not-for-profit third-party certification organization formed by industry and government associations on behalf the construction industry in 2000 (modelled on UK CARES). It aims to ensure manufacture and supply of construction steels to the industry can be independently and expertly demonstrated to meet the requirements of the relevant AS/NZS Standards. ACRS is accredited as a product certification body to ISO/IEC 17065. As well as the ACRS scheme, the Australian Technical Infrastructure Committee (ATIC), which is a government agency, has launched ATIC Scheme 10 through Joint Accreditation System of Australia and New Zealand (JAS-ANZ).

#### C.2 Quality control in Hong Kong

In Hong Kong, all responsibility to the structural safety of building structures rests upon Registered Structural Engineers, who are experienced structural engineers with dual registration recognized by the Hong Kong Institution of Engineers and the Buildings Department of the Government of Hong Kong SAR. The RSEs should exercise proper control of all structural safety issues in the design and construction of building structures together with proper quality control of all construction materials, including structural steel materials.

For each construction project, there is a designated RSE approved by the Buildings Department. The RSE or his representative should confirm the supply sources of the steel materials as well as the quality assurance systems effectively implemented during production of the steel materials. He is also responsible for endorsing the steel materials mill certificates while the steel manufacturers should issue an authenticated test certificate for every batch of the steel materials. Mandatory information on the following test results include:

- Yield strength
- Tensile strength
- Elongation limit
- Impact energy
- Chemical contents, based on a ladle or a product analysis, of Carbon (C), Sulphur (S), Phosphorous (P), Silicon (Si), Manganese (Mn), Copper (Cu), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al), Niobium (Nb), Titanium (Ti), Vanadium (V), Nitrogen (N) and any other element intentionally added.
- The value of CEV.
- Hardness for bolts, nuts and washers.

It should be noted that the RSE may request additional material tests on samples of steel materials selected in fabrication plants or on construction sites.

All the material testing should be carried out by accredited laboratories recognized by the Hong Kong Laboratory Accreditation Scheme (HOKLAS) or their mutually recognized laboratories. The scope of the material testing required is similar to those listed in Item a) above.

It should be noted that HOKLAS is an accreditation scheme operated by the Hong Kong Accreditation Service (HKAS) under the management of the Innovation and Technology Commission, the Government of Hong Kong SAR. The scheme is open to the voluntary participation of any Hong Kong laboratory which performs objective testing and calibration falling within the scope of the Scheme and meets the HOKLAS criteria of competence.

For further information on the use of equivalent steel materials and associated quality control procedures for construction projects in Hong Kong, please refer to the Code of Practice for the Structural Use of Steel.

#### C.3 Quality control in Macau

In Macau, structural engineers are responsible for all structural safety issues in the design and construction of building structures together with good quality control for all construction materials, including structural steel materials.

For structural steel works, structural engineers are required to ensure that all steel materials are in compliance with the requirements specified in the Code of Structural Steel for Buildings (REAE) (2001) which was prepared with the cooperation of the Land, Public Works and Transport Bureau (DSSOPT) of the Government of Macao SAR and the Civil Engineering Laboratory of Macau (LECM). Quality control activities should be carried out by contractors according to REAE, as well as to the Approval & Reception Procedure (ARP) (prepared by the quality assurance entities nominated by the Government of Macau SAR) for public projects.

DSSOPT is one of the public organizations under the Government of Macau SAR providing technical support and giving suggestions for policy making related to physical developments in the areas of land management and utilization, urban planning, infrastructure, and basic services in Macau. The Bureau also defines guidelines for economic and societal developments as well as other activities of the interest of Macau.

LECM is a non-profit making technical and scientific organization acting in the public interest with technical, budgetary and patrimonial autonomy. It provides technical support in the areas of civil engineering and related sciences to the Government of Macau SAR, and also to civil engineering construction firms undertaking both public and private works in Macau.

Steel manufacturers should issue an authenticated mill certificate for every batch of steel materials, and mandatory information on the following test results including:

- Geometrical properties
- Mechanical Properties: Yield strength, Tensile strength, Elongation limit
- Impact energy
- Chemical contents, based on a ladle or a product analysis, of Carbon (C), Sulphur (S), Phosphorous (P), Silicon (Si), Manganese (Mn), Copper (Cu), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al), Niobium (Nb), Titanium (Ti), Vanadium (V), Nitrogen (N), CEV and any other element intentionally added.
- Mechanical properties and hardness for bolts, nuts and washers

Structural engineers may request additional material tests on samples of steel materials selected in fabrication plants and on construction sites.

For further information on the use of equivalent steel materials and associated quality control procedures for construction projects in Macau, please refer to the Code of Structural Steel for Buildings (REAE).

#### C.4 Quality control in Malaysia

In Malaysia, construction practice closely follows the European Standards. The design of steel structures, steel-concrete composite structures adopts the Structural Eurocodes EN 1993 and EN 1994, with their own National Annex. Structural engineers are responsible for ensuring that civil and building structures as erected comply with the standards, and therefore comply with the Malaysia Standards or Uniform Building by Law.

The Construction Industry Development Board of Malaysia (CIDB) was established under the Construction Industry Development Board Act entrusted with the responsibility of coordinating the needs and wants of the Construction Industry.

The CIDB is also responsible for endorsing the construction materials and products with a 'Certificate of Approval'. Hence, the structural steel products and other building materials should comply with the Malaysian Industrial Standard for local applications. Mandatory information on the following test results required for the 'Certificate of Approval' include:

- Yield strength
- Tensile strength
- Elongation limit
- Impact energy
- Chemical contents, based on a ladle or a product analysis, of Carbon (C), Sulphur (S), Phosphorous (P), Silicon (Si), Manganese (Mn), Copper (Cu), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al), Niobium (Nb), Titanium (Ti), Vanadium (V), Nitrogen (N) and any other element intentionally added.
- The value of CEV
- Hardness for bolts, nuts and washers.

For further information regarding the 'Certificate of Approval' and associated quality control procedures for construction projects in Malaysia, please refer to the website: <a href="http://www.cidb.gov.my">http://www.cidb.gov.my</a>.

#### C.5 Quality control in Singapore

In Singapore, the Building and Construction Authority is the regulatory authority which is responsible for safe design and construction of buildings as well as quality control of all constructional materials, including steel materials. In general, Qualified Persons (QPs) should specify and design with only those steel materials manufactured by steel manufacturers with a valid Factory Production Certificate in full accordance with the steel materials specifications adopted in the design stage. It should be noted that the Factory Production Certificate should be issued by a certification agency acceptable to Building and Construction Authority. For the list of acceptable certification agencies, please refer to BC1: 2012.

Moreover, the steel manufacturers should also issue an authenticated test certificate for every batch of steel materials, and mandatory information on the following test results include:

- Yield strength
- Tensile strength
- Elongation limit
- Impact energy
- Chemical contents, based on a ladle or a product analysis, of Carbon (C), Sulphur (S), Phosphorous (P), Silicon (Si), Manganese (Mn), Copper (Cu), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al), Niobium (Nb), Titanium (Ti), Vanadium (V), Nitrogen (N) and any other element intentionally added.
- The value of CEV.
- Hardness for bolts, nuts and washers.

For further information on the use of equivalent steel materials and associated quality control procedures for construction projects in Singapore, please refer to the Design Guide on Use of Alternative Structural Steel to BS5950 and Eurocode 3 (BC1).

# Appendix D Worked Examples

- D.1 Acceptance of British/European steel materials
- D.2 Acceptance of American steel materials
- D.3 Acceptance of Japanese steel materials
- D.4 Acceptance of Australian/New Zealand steel materials
- D.5 Acceptance of Chinese steel materials
- D.6 Acceptance of Russian steel materials
- D.7 Acceptance of Class E3 steel materials

#### D.1 Acceptance of British/European steel materials

Consider a batch of Grade S355J0 steel plates have been received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel plates as illustrated in Figure D1.

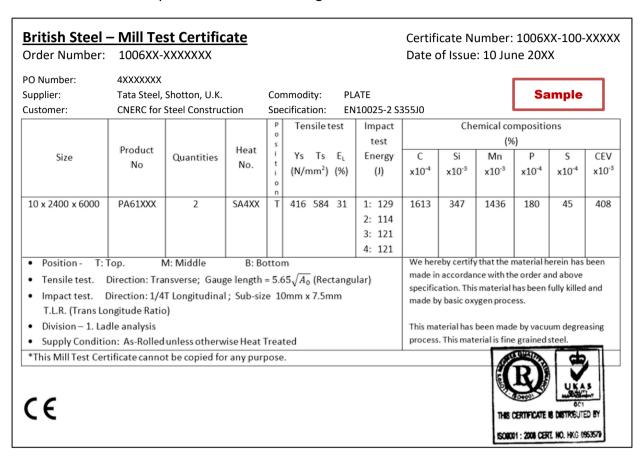



Figure D1 Mill certificate of Grade S355JO steels

Comparison against requirements of chemical compositions: (Table MR1)

i) Carbon content :  $C_{steel} = 0.1613$   $\leq C_{HK} = 0.26$  Ok ii) Phosphorus content :  $P_{steel} = 0.0180$   $\leq P_{HK} = 0.045$  iii) Sulphur content :  $S_{steel} = 0.0045$   $\leq S_{HK} = 0.050$  iv) CEV :  $CEV_{steel} = 0.408$   $\leq CEV_{HK} = 0.49$ 

Comparison against requirements of mechanical properties: (Table 4.2a & MR1)

i) Yield strength : R<sub>e.steel</sub> = 416  $\geq R_{e,HK}$ = 355 Ok ii) Tensile strength : R<sub>m,steel</sub> = 584 = 440 $\geq R_{m,HK}$ iii) Elongation limit = 31 = 15 : Ef.steel ≥ ε<sub>f.HK</sub> iv) Strength ratio :  $R_{m,steel}/R_{e,steel} = 1.40$  $\geq R_{m,HK}/R_{e,HK}$ = 1.10v) Impact toughness = 114J@0°C  $\geq KV_{HK}$ = 27J@0°C : KV<sub>steel</sub>

Table D1 Key information for selection of equivalent steel materials

| National material                                       | С        | hemical cor | nposition (% | 6)       | Mechanical properties               |                                                     |                       |                                |
|---------------------------------------------------------|----------|-------------|--------------|----------|-------------------------------------|-----------------------------------------------------|-----------------------|--------------------------------|
| specification                                           | С        | Р           | S            | CEV      | R <sub>e</sub> (N/mm <sup>2</sup> ) | R <sub>m</sub> (N/mm <sup>2</sup> )                 | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |
| HK Code requirement                                     | 0.26     | 0.045       | 0.050        | 0.49     | 355                                 | 440                                                 | 15                    | ≥1.10                          |
| EN 10025-2                                              | 0.20     | 0.030       | 0.030        | 0.45     | 355                                 | 470                                                 | 22                    | 1.32                           |
| Mill Certificate of<br>10mm thick S355J0<br>steel plate | 0.16     | 0.018       | 0.005        | 0.41     | 416                                 | 584                                                 | 31                    | 1.40                           |
| Comparisons against key parameters                      | S (0.05) | P (0        | .05)         | C (0.50) | ε <sub>f</sub> (25)                 | Re (6  Re/Rm  HK Code re  EN 10025-2  Mill Certific | (1.5) equirement      | am (600)                       |

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.

The steel mill has obtained a **CE** mark for their steel products. Hence, both the manufacturing process and the quality control system have been demonstrated in the mill certificate to have an effective implementation of a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials are classified as **Class E1** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.0 (see Table 3.1). According to Table 4.2a, the minimum yield strength  $R_{eH}$  is specified as 355N/mm², while the tensile strength  $R_m$  is specified as 440N/mm². Hence, the nominal values of yield strength  $f_{V}$  and tensile strength  $f_{U}$  should be equal to  $R_{eH}$  and  $R_m$  respectively.

## D.2 Acceptance of American steel materials

Consider a batch of Grade 55 steel plates received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel plates as illustrated in Figure D2.

## **American Steel**

#### **Certified Mill Test Report**

Certificate Number: 881903-100-XXXXX

Date of issue: 12 May 20XX

Steel product: Hot rolled / Steel Plate
Specification: ASTM A572 Grade 55
Customer: CNERC for Steel Construction

Supply Condition: As Rolled, Killed

#### Sample

#### Chemical composition

| Product     | Plate  | Heat  | Dim | Dimensions (mm) |      |       |      |      | Chem | ical ladl | e analys | is (%) |     |      |
|-------------|--------|-------|-----|-----------------|------|-------|------|------|------|-----------|----------|--------|-----|------|
| Number      | Number | No.   | Т   | w               | L    | (PCS) | С    | Si   | Mn   | Р         | S        | Cu     | Ni  | CEV  |
| 1002F-31XXX | BXXXXX | SA4XX | 20  | 1574            | 6056 | 8     | 0.12 | 0.31 | 1.50 | 0.03      | 0.03     | 0.3    | 0.3 | 0.44 |

## Mechanical properties

| Product<br>Number | Plate<br>Number | Heat<br>No. | Yield<br>Strength<br>(N/mm²) | Tensile<br>Strength<br>(N/mm²) | ε <sub>f</sub> (%) | Impact<br>toughness |
|-------------------|-----------------|-------------|------------------------------|--------------------------------|--------------------|---------------------|
| 1002F-31XXX       | BXXXXX          | SA4XX       | 409                          | 553                            | 34                 | 96J at 20°C         |

We hereby certify that the material herein has been made in accordance with the order and above specification. This material has been fully killed and made by basic oxygen process.

This material has been made by vacuum degreasing process. This material is fine grained steel.







Figure D2 Mill certificate of Grade 55 steels

Table D2 Key information for selection of equivalent steel materials

| National material                                         | С        | hemical cor | nposition (%       | 6)       | Mechanical properties               |                                                                                        |                       |                                |
|-----------------------------------------------------------|----------|-------------|--------------------|----------|-------------------------------------|----------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| specification                                             | С        | Р           | S                  | CEV      | R <sub>e</sub> (N/mm <sup>2</sup> ) | R <sub>m</sub> (N/mm <sup>2</sup> )                                                    | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |
| HK Code requirement                                       | 0.26     | 0.045       | 0.050              | 0.49     | 355                                 | 440                                                                                    | 15                    | ≥1.10                          |
| ASTM A572                                                 | 0.25     | 0.030       | 0.030              | 0.50*    | 380                                 | 485                                                                                    | 17                    | 1.28                           |
| Mill Certificate of<br>20mm thick Grade<br>55 steel plate | 0.12     | 0.030       | 0.030              | 0.44     | 409                                 | 553                                                                                    | 34                    | 1.35                           |
| Comparisons<br>against key<br>parameters                  | s (0.05) | P (0        | .05)<br>equirement | C (0.50) | ε <sub>f</sub> (25)                 | R <sub>e</sub> (6  R <sub>e</sub> /R <sub>m</sub> HK Code re  ASTM A 57  Mill Certific | (1.5) quirement       | im (600)                       |

Note:  $\ast$  it can be specified by the purchaser.

Comparison against requirements of chemical compositions:

(Table MR1)

Ok

Ok

| i)   | Carbon content     | $: C_{steel} = 0.12$   | ≤ C <sub>HK</sub>  | = 0.26         |
|------|--------------------|------------------------|--------------------|----------------|
| ii)  | Phosphorus content | $: P_{steel} = 0.030$  | $\leq P_{HK}$      | = 0.045        |
| iii) | Sulphur content    | $: S_{steel} = 0.030$  | $\leq S_{HK}$      | = 0.050        |
| i)   | CEV                | : $CEV_{steel} = 0.44$ | ≤ CEV <sub>F</sub> | $_{1K}$ = 0.49 |

Comparison against requirements of mechanical properties:

(Table 4.2a & MR1)

| i)   | Yield strength   | : R <sub>e,steel</sub>     | = 409               | ≥ R <sub>e,HK</sub>           | = 355      |
|------|------------------|----------------------------|---------------------|-------------------------------|------------|
| ii)  | Tensile strength | : R <sub>m,steel</sub>     | = 553               | $\geq R_{m,HK}$               | = 440      |
| iii) | Elongation limit | : ε <sub>f,steel</sub>     | = 34                | $\geq \epsilon_{\text{f,HK}}$ | = 15       |
| iv)  | Strength ratio   | : $R_{m,steel}/R_{e,stee}$ | <sub>I</sub> = 1.35 | $\geq R_{m,HK}/R_{e,HK}$      | = 1.10     |
| v)   | Impact toughness | : KV <sub>steel</sub>      | = 96J@20°C          | $\geq KV_{HK}$                | = 27J@20°C |

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.

The steel mill has obtained an **ISO 9001** mark for factory quality management system, but no certified **Factory Production Control** system is demonstrated in the mill certificate. Hence, the manufacturing process and quality control system is considered to have in-house quality

assurance system but not a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E2** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.1 (see Table 3.1). Hence, the strengths of the equivalent Grade 55 steel plates are calculated as follows:

Minimum yield strength (R<sub>eH</sub>) and ultimate tensile strength (R<sub>m</sub>): (Table 4.8)

For 20mm thick plate :  $R_{eH} = 0.95R_{eH0} = 361N/mm^2$   $R_m = 0.95R_{m0} = 461N/mm^2$ 

Design values of yield strength  $(f_v)$  and ultimate tensile strength  $(f_u)$ : (Equation 3.1 & 3.2)

For 20mm thick plate :  $f_y = 361/1.1 = 328 \text{N/mm}^2$   $f_u = 461/1.1 = 419 \text{N/mm}^2$ 

## D.3 Acceptance of Japanese steel materials

Consider a batch of Grade SYW295 sheet piles received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel piles as illustrated in Figure D3.

# Japanese Steel

## **Mill Test Certificate**

Sample

CERTIFICATE No.: <u>JS-20XX-800-XXXXXX</u>

CONTRACT No.: <u>NIS3620XX-XX</u>

CLIENT: <u>CNERC for Steel Construction</u>

PRODUCT: <u>Steel Sheet Pile / Hot Rolled</u> SPECIFICATION: <u>JIS A 5523</u>

#### Chemical composition

| Product     | Heat  | Steel  | Dimensions   | Quantity    | (     | Chemica | l compo | sition of | f the lad | le anal | ysis (% | )    |     |
|-------------|-------|--------|--------------|-------------|-------|---------|---------|-----------|-----------|---------|---------|------|-----|
| No.         | No.   | Grade  | T*W*L (mm³)  | T*W*L (mm³) | (PCS) | С       | Si      | Mn        | Р         | S       | Cu      | Ni   | CEV |
| JS20XX-25XX | JS7XX | SYW295 | 25*1523*8061 | 5           | 0.15  | 0.31    | 1.46    | 0.03      | 0.03      | 0.3     | 0.3     | 0.43 |     |

## Mechanical properties

| Product     | Quantity |                | Mechanical properties |                |              |  |  |  |  |
|-------------|----------|----------------|-----------------------|----------------|--------------|--|--|--|--|
| No.         | (PCS)    | Yield Strength | Tensile Strength      | ε <sub>f</sub> | Impact       |  |  |  |  |
| INO.        | (PC3)    | (N/mm²)        | (N/mm²)               | (%)            | toughness    |  |  |  |  |
| JS20XX-25XX | 5        | 395            | 521                   | 32             | 126J at 20°C |  |  |  |  |

#### ADDITIONAL DETAIL

- ✓ This material has been fully killed.
- We hereby certify that the material described herein has been manufactured, sampled and tested by XXXXX Steel & Metal Inc., in accordance with the above specification and the client order requirements. All results meet the corresponding requirements.
- ✓ In product certification system covered by JQA, JIS No. A5528 is for Hot Rolled Steel Sheet Piles.





Figure D3 Mill certificate of Grade SYW295 steels

Table D3 Key information for selection of equivalent steel materials

| National material                                                     | С        | hemical cor | nposition (% | 6)       | Mechanical properties               |                                              |                       |                                |  |
|-----------------------------------------------------------------------|----------|-------------|--------------|----------|-------------------------------------|----------------------------------------------|-----------------------|--------------------------------|--|
| specification                                                         | С        | Р           | S            | CEV      | R <sub>e</sub> (N/mm <sup>2</sup> ) | R <sub>m</sub> (N/mm <sup>2</sup> )          | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |  |
| HK Code requirement                                                   | 0.25     | 0.050       | 0.050        | 0.48     | 275                                 | 350                                          | 15                    | ≥1.10                          |  |
| JIS A 5523                                                            | 0.18     | 0.040       | 0.040        | 0.44     | 295                                 | 450                                          | 24                    | 1.53                           |  |
| Mill Certificate of<br>25mm thick Grade<br>SYW295 steel<br>sheet pile | 0.15     | 0.030       | 0.030        | 0.43     | 395                                 | 521                                          | 32                    | 1.32                           |  |
| Comparisons<br>against key<br>parameters                              | S (0.05) | P (0        | .05)         | C (0.50) | ε <sub>f</sub> (25)                 | Re/Rm  HK Code re  JIS A 5523  Mill Certific | (1.5)                 | im (600)                       |  |

Comparison against requirements of chemical compositions:

(Table MR4)

Ok

Ok

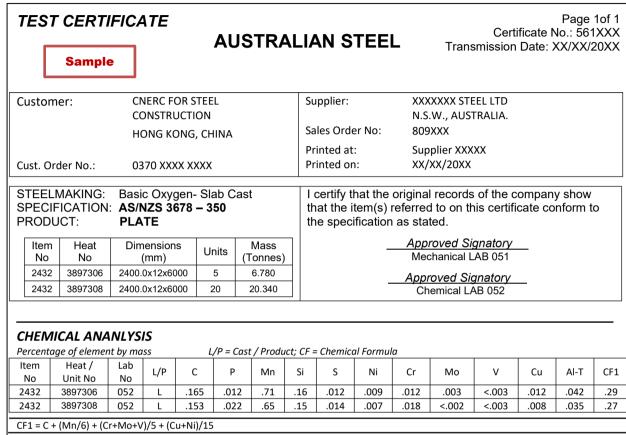
i) Carbon content :  $C_{steel} = 0.15$   $\leq C_{HK} = 0.25$ ii) Phosphorus content :  $P_{steel} = 0.03$   $\leq P_{HK} = 0.05$ iii) Sulphur content :  $S_{steel} = 0.03$   $\leq S_{HK} = 0.05$ iv) CEV :  $CEV_{steel} = 0.43$   $\leq CEV_{HK} = 0.48$ 

Comparison against requirements of mechanical properties:

(Table 4.2a & MR4)

i) Yield strength = 395 ≥ R<sub>e</sub> = 275 : R<sub>e,steel</sub> ii) Tensile strength : R<sub>m,steel</sub> = 521  $\geq R_m$ = 350 iii) Elongation limit = 32 ≥ ε<sub>f</sub> = 15 : Ef.steel iv) Strength ratio :  $R_{m,steel}/R_{e,steel} = 1.32$  $\geq R_m/R_e = 1.10$ v) Impact toughness : KV<sub>steel</sub>  $= 126J@20^{\circ}C \ge KV_{HK} = Nil$ 

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.


The steel mill has obtained a **JIS** mark for their steel products. Hence, both the manufacturing process and the quality control system have been demonstrated in the mill

certificate to have an effective implementation of a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E1** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.0 (see Table 3.1). According to Table 4.2c, the yield strength and tensile strength of Grade SYW295 steel sheet piles should be taken as  $R_{eH} = 295 \text{ N/mm}^2$  and  $R_m = 450 \text{ N/mm}^2$  respectively. Hence, the design yield strength  $f_{V}$  is specified as  $R_{eH}/1.0 = 295 \text{N/mm}^2$ , while the design tensile strength  $f_{V}$  is specified as  $R_{eH}/1.0 = 295 \text{N/mm}^2$ , while the design tensile strength  $f_{V}$  is specified as  $R_{eH}/1.0 = 450 \text{N/mm}^2$ .

#### D.4 Acceptance of Australian/New Zealand steel materials

Consider a batch of Grade 350 steel plates received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel plates as illustrated in Figure D4.



## MECHANICAL TESTS

Tensile AS 1391 (Loc = Test Piece Location, TQF = Transverse Quarter Front End, CAT = Test Category, B=Batch)

| Item<br>No | Heat /<br>Unit No | Tested<br>Unit | Lab<br>No | Cat | Loc | Thick<br>mm | ReH<br>MPa | Rm<br>MPa | Lo | ELONGN | IMPACT<br>TOU. |
|------------|-------------------|----------------|-----------|-----|-----|-------------|------------|-----------|----|--------|----------------|
| 2432       | 3897306           | FD334          | 051       | В   | TQF | 12.0        | 480        | 530       | Α  | 26     | 84J@20°C       |
| 2432       | 3897308           | FD336          | 051       | В   | TQF | 12.0        | 420        | 480       | Α  | 27     | 86J@20°C       |

For gauge length (Lo), A=5.65 \*square root of the original cross-sectional area of the test piece.

#### **COMMENTS**

THIS PRODUCT IS SUPPLIED IN ACCORDANCE WITH THE REQUIREMENTS OF AS/NZS 3678:2016 SAMPLING AND CHEMICAL ANALYSIS ARE PERFORMED IN ACCORDANCE WITH BLUESCOPE STEEL PROCEDURE DH-LABS-QS-00 S05.07C. MECHANICAL TESTING HAS BEEN PERFORMED ON SAMPLES SUPPLIED BY THE RELEVANT PRODUCTION DEPARTMENTS. HEAT TREATMENT- PRODUCT AS ROLLED.



Figure D4 Mill certificate of Grade 350 steels

Table D4 Key information for selection of equivalent steel materials

| National material                                          | С        | hemical cor | nposition (%       | 6)       | Mechanical properties               |                                                     |                       |                                |
|------------------------------------------------------------|----------|-------------|--------------------|----------|-------------------------------------|-----------------------------------------------------|-----------------------|--------------------------------|
| specification                                              | С        | Р           | S                  | CEV      | R <sub>e</sub> (N/mm <sup>2</sup> ) | R <sub>m</sub> (N/mm <sup>2</sup> )                 | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |
| HK Code requirement                                        | 0.26     | 0.045       | 0.050              | 0.49     | 355                                 | 440                                                 | 15                    | ≥1.10                          |
| AS/NZS 3678                                                | 0.22     | 0.040       | 0.030              | 0.48     | 360                                 | 450                                                 | 20                    | 1.25                           |
| Mill Certificate of<br>12mm thick Grade<br>350 steel plate | 0.165    | 0.022       | 0.014              | 0.29     | 420                                 | 480                                                 | 26                    | 1.14                           |
| Comparisons<br>against key<br>parameters                   | S (0.05) | P (0        | .05)<br>equirement | C (0.50) | ε <sub>f</sub> (25)                 | Re/Rm  Re/Rm  HK Code re  AS/NZS 367  Mill Certific | (1.5) quirement       | im (600)                       |

Comparison against requirements of chemical compositions:

(Table MR1)

Ok

Ok

i) Carbon content:  $C_{Steel}$ = 0.165 $\leq C_{HK}$ = 0.26ii) Phosphorus content:  $P_{Steel}$ = 0.022 $\leq P_{HK}$ = 0.045iii) Sulphur content:  $S_{Steel}$ = 0.014 $\leq S_{HK}$ = 0.050iv) CEV:  $CEV_{Steel}$ = 0.29 $\leq CEV_{HK}$ = 0.49

Comparison against requirements of mechanical properties:

(Table 4.2a & MR1)

i) Yield strength = 420 ≥ R<sub>e</sub> = 355 : R<sub>e,steel</sub> ii) Tensile strength = 480≥ R<sub>m</sub> = 440: R<sub>m,steel</sub> = 26 iii) Elongation limit ≥ <sub>Ef</sub> = 15 : ε<sub>f,steel</sub> iv) Strength ratio :  $R_{m,steel}/R_{e,steel} = 1.14$  $\geq R_{\rm m}/R_{\rm e} = 1.10$ v) Impact toughness = 84J@20°C ≥ KV<sub>HK</sub> = 27J@20°C : KV<sub>steel</sub>

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.

The steel mill has obtained an **ACRS** mark for their steel products. Hence, both the manufacturing process and the quality control system have been demonstrated in the mill certificate to have an effective implementation of a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E1** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.0 (see Table 3.1). According to Table 4.2d, the yield strength and tensile strength of Grade 350 steel sheet piles should be taken as  $R_{eH} = 350 \text{ N/mm}^2$  and  $R_m = 430 \text{ N/mm}^2$  respectively. Hence, the design yield strength  $f_{V}$  is specified as  $R_{eH}/1.0 = 350 \text{ N/mm}^2$ , while the design tensile strength  $f_{U}$  is specified as  $R_{m}/1.0 = 430 \text{ N/mm}^2$ .

#### **D.5** Acceptance of Chinese steel materials

Consider a batch of Grade Q235B steel strips received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel strips as illustrated in Figure D5.

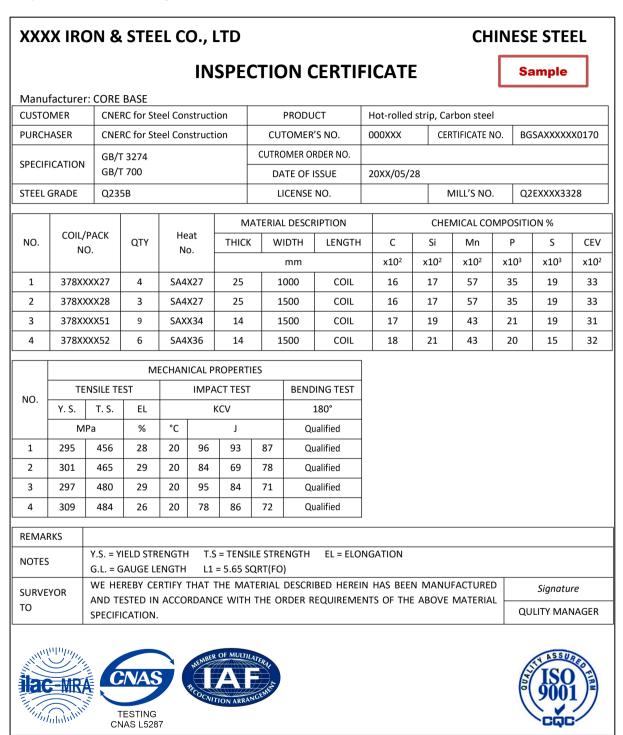



Figure D5 Mill certificate of Grade Q235B steels

Table D5 Key information for selection of equivalent steel materials

| National material                                                                    | Chemical composition (%)                                                        |                                                                     |       |                                                                                                                                                             | Mechanical properties                                                                                     |                                     |                       |                                |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|--------------------------------|
| specification                                                                        | С                                                                               | Р                                                                   | S     | CEV                                                                                                                                                         | R <sub>e</sub> (N/mm <sup>2</sup> )                                                                       | R <sub>m</sub> (N/mm <sup>2</sup> ) | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |
| HK Code requirement                                                                  | 0.26                                                                            | 0.045                                                               | 0.050 | 0.40                                                                                                                                                        | 235<br>(225)                                                                                              | 360                                 | 15                    | ≥1.10                          |
| GB/T 700                                                                             | 0.20                                                                            | 0.045                                                               | 0.045 | 0.35                                                                                                                                                        | 235<br>(225)                                                                                              | 370                                 | 26<br>(25)            | 1.64<br>(1.68)                 |
| Mill Certificate of<br>25mm thick Grade<br>Q235B steel plate                         | 0.16                                                                            | 0.035                                                               | 0.019 | 0.33                                                                                                                                                        | 295                                                                                                       | 456                                 | 28                    | 1.55                           |
| Mill Certificate of<br>14mm thick Grade<br>Q235B steel plate                         | 0.18                                                                            | 0.021                                                               | 0.019 | 0.32                                                                                                                                                        | 297                                                                                                       | 480                                 | 26                    | 1.62                           |
| Comparisons against key parameters for 25mm thick Grade Q235B steel plate            | S (0.05)                                                                        | C (0.50)  P (0.05)  HK Code requirement  GB/T 700  Mill Certificate |       |                                                                                                                                                             | R <sub>m</sub> (600)  R <sub>e</sub> /R <sub>m</sub> (2.0)  HK Code requirement GB/T 700 Mill Certificate |                                     |                       |                                |
| Comparisons<br>against key<br>parameters for<br>14mm thick Grade<br>Q235 steel plate | CEV (0.50)  S (0.05)  P (0.05)  HK Code requirement  GB/T 700  Mill Certificate |                                                                     |       | R <sub>e</sub> (600)  R <sub>m</sub> (600)  R <sub>m</sub> (600)  R <sub>m</sub> (600)  R <sub>m</sub> (600)  HK Code requirement GB/T 700 Mill Certificate |                                                                                                           |                                     |                       |                                |

Note: the data in bracket is for thickness t (mm):  $16 < t \le 40$ .

## For 25mm thick Grade Q235B steel plate:

Comparison against requirements of chemical compositions:

(Table MR1)

Ok

Comparison against requirements of mechanical properties: (Table 4.2a & MR1)

| i)   | Yield strength   | : R <sub>e,steel</sub>                       | = 295      | ≥ R <sub>e,HK</sub>      | = 2225    | Ok |
|------|------------------|----------------------------------------------|------------|--------------------------|-----------|----|
| ii)  | Tensile strength | : R <sub>m,steel</sub>                       | = 456      | ≥ R <sub>m,HK</sub>      | = 360     |    |
| iii) | Elongation limit | : Ef,steel                                   | = 28       | ≥ ε <sub>f,HK</sub>      | = 15      |    |
| iv)  | Strength ratio   | : R <sub>m,steel</sub> /R <sub>e,steel</sub> | ı = 1.55   | $\geq R_{m,HK}/R_{e,HK}$ | = 1.10    |    |
| v)   | Impact toughness | : KV <sub>steel</sub>                        | = 69J@20°C | ≥ KV <sub>HK</sub>       | =27J@20°C |    |

#### For 14mm thick Grade Q235B steel plate:

Comparison against requirements of chemical compositions: (Table MR1)

= 0.18iv) Carbon content : S<sub>teel</sub> ≤ C<sub>HK</sub> = 0.26Ok v) Phosphorus content: P<sub>steel</sub> = 0.021≤ P<sub>HK</sub> = 0.045= 0.050vi) Sulphur content  $: S_{steel} = 0.019$ ≤ S<sub>HK</sub> v) CEV : CEV<sub>steel</sub> = 0.32  $\leq$  CEV<sub>HK</sub> = 0.40

Comparison against requirements of mechanical properties: (Table 4.2a & MR1)

```
vi) Yield strength
                                  : R<sub>e.steel</sub> = 297
                                                                                    = 235
                                                                                                                 Ok
                                                                ≥ R<sub>e.HK</sub>
                                                                ≥ R_{m,HK}
vii) Tensile strength
                                  : R_{m,steel} = 480
                                                                                    = 360
viii)Elongation limit
                                  : \varepsilon_{f,steel} = 26
                                                                                    = 15
                                                                ≥ ε<sub>f,HK</sub>
ix) Strength ratio
                                  : R_{m,steel}/R_{e,steel} = 1.62 \ge R_{m,HK}/R_{e,HK}
                                                                                   = 1.10
x) Impact toughness
                                  : KV_{steel} = 71J@20°C ≥ KV_{HK}
                                                                                   = 27 J@20°C
```

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.

The steel mill has obtained a **CQC** (i.e., ISO 9001) mark for factory quality management system, but no certified **Factory Production Control** system is demonstrated in the mill certificate. Hence, the manufacturing process and quality control system is considered to have in-house quality assurance system but not a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E2** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.1 (see Table 3.1). Hence, the strengths of the equivalent Grade Q235B steel plates are calculated as follows:

Minimum yield strength  $(R_{eH})$  and ultimate tensile strength  $(R_m)$ : (Table 4.8)

i) For 14mm thick plate:  $R_{eH} = R_{eH0} = 235 \text{ N/mm}^2$   $R_m = R_{m0} = 370 \text{ N/mm}^2$ ii) For 25mm thick plate:  $R_{eH} = 0.95R_{eH0} = 214 \text{ N/mm}^2$   $R_m = 0.95R_{m0} = 351 \text{ N/mm}^2$ 

Nominal values of yield strength  $(f_v)$  and ultimate tensile strength  $(f_u)$ : (Equation 3.1 & 3.2)

i) For 14mm thick plate:  $f_y = 235/1.1 = 214 \text{ N/mm}^2$   $f_u = 370/1.1 = 336 \text{ N/mm}^2$ ii) For 25mm thick plate:  $f_y = 214/1.1 = 194 \text{ N/mm}^2$   $f_u = 351/1.1 = 319 \text{ N/mm}^2$ 

#### D.6 Acceptance of Russian steel materials

Consider a batch of C355 steel sections received in a construction site in Hong Kong. A site engineer of this construction site received the corresponding mill certificate of the steel sections as illustrated in Figure D6.

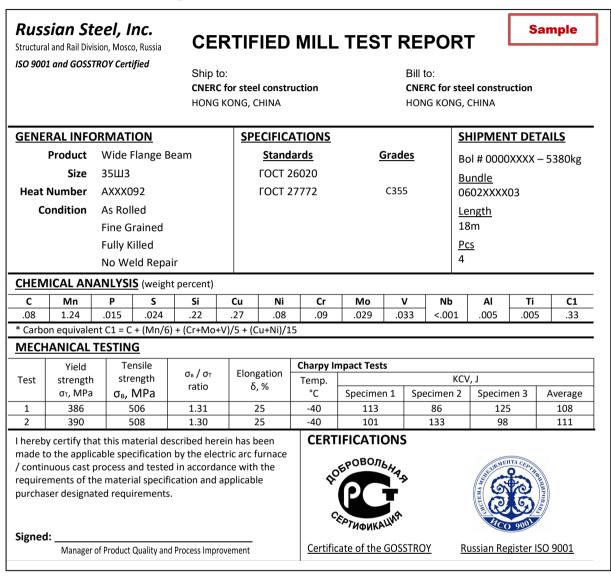



Figure D6 Mill certificate of Grade C355 section steels

Table D6 Key information for selection of equivalent steel materials

| specification                                                                   | Chemical composition (%)                                       |       |       |                                                                                                            | Mechanical properties               |                           |                       |                                |
|---------------------------------------------------------------------------------|----------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|-----------------------|--------------------------------|
|                                                                                 | С                                                              | Р     | S     | CEV                                                                                                        | R <sub>e</sub> (N/mm <sup>2</sup> ) | R <sub>m</sub><br>(N/mm²) | ε <sub>f</sub><br>(%) | R <sub>m</sub> /R <sub>e</sub> |
| HK Code requirement                                                             | 0.26                                                           | 0.045 | 0.050 | 0.49                                                                                                       | 355                                 | 440                       | 15                    | ≥1.10                          |
| GOST 27772                                                                      | 0.14                                                           | 0.025 | 0.025 | 0.45                                                                                                       | 355                                 | 470                       | 21                    | 1.32                           |
| Mill Certificate of<br>15mm thick Grade<br>C355 steel plate for<br>35Ш3 section | 0.08                                                           | 0.015 | 0.024 | 0.33                                                                                                       | 386                                 | 506                       | 25                    | 1.31                           |
| Comparisons<br>against key<br>parameters                                        | CEV (0.50)  S (0.05)  P (0.05)  HK Code requirement GOST 27772 |       |       | R <sub>e</sub> (600)  Ef (25)  R <sub>m</sub> (600)  R <sub>m</sub> (600)  HK Code requirement  GOST 27772 |                                     |                           |                       |                                |

Comparison against requirements of chemical compositions:

(Table MR1)

Ok

| i)   | Carbon content     | : C <sub>Steel</sub>   | = 0.08  | $\leq C_{HK}$       | = 0.26              |
|------|--------------------|------------------------|---------|---------------------|---------------------|
| ii)  | Phosphorus content | : P <sub>Steel</sub>   | = 0.015 | $\leq P_{HK}$       | = 0.045             |
| iii) | Sulphur content    | : S <sub>Steel</sub>   | = 0.024 | $\leq S_{HK}$       | = 0.050             |
| iv)  | CEV                | : CEV <sub>Steel</sub> | = 0.33  | ≤ CEV <sub>HI</sub> | <sub>K</sub> = 0.49 |

Comparison against requirements of mechanical properties:

(Table 4.2a & MR1)

| vi) Yield strength    | : R <sub>e,steel</sub>     | = 386       | ≥ R <sub>e</sub> | = 355        | Ok |
|-----------------------|----------------------------|-------------|------------------|--------------|----|
| vii) Tensile strength | : R <sub>m,steel</sub>     | = 506       | $\geq R_{m}$     | = 440        |    |
| viii)Elongation limit | : Ef,steel                 | = 25        | ≥ ε <sub>f</sub> | = 15         |    |
| ix) Strength ratio    | $: R_{m,steel}/R_{e,stee}$ | ı = 1.31    | $\geq R_m/R$     | $k_e = 1.10$ |    |
| x) Impact toughness   | : KV <sub>steel</sub>      | = 86J@-40°C | $\geq KV_{HK}$   | = 27J@-40°C  |    |

Based on the values listed in the mill certificate, all the requirements of chemical compositions and mechanical properties are found to be satisfied. Thus, the steel materials should be accepted.

The steel mill has obtained a **GOSSTROY** mark for their steel products. Hence, both the manufacturing process and the quality control system have been demonstrated in the mill

certificate to have an effective implementation of a certified **Factory Production Control** system (refer to Section 3.4.1).

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E1** structural steels, and the material class factor  $\gamma_{MC}$  is taken as 1.0 (see Table 3.1). According to Table 4.2f, the yield strength and tensile strength of Grade C355 steel sections should be taken as  $R_{eH} = 355 \text{ N/mm}^2$  and  $R_m = 470 \text{ N/mm}^2$  respectively. Hence, the design yield strength  $f_V$  is specified as  $R_{eH}/1.0 = 355 \text{ N/mm}^2$ , while the design tensile strength  $f_U$  is specified as  $R_m/1.0 = 470 \text{ N/mm}^2$ .

#### D.7 Acceptance of Class E3 steel materials steel materials

Consider a batch of steel plates have been left unused in a construction site in Hong Kong, and the corresponding mill certificate of the steel plates was missing. In another case, there is a variety of structural steel mixed together, but the mill certificates can't be confirmed for every kind of steel by the site engineer of this construction site.

Due to the lack of certified values of chemical compositions and mechanical properties, these steels cannot be demonstrated to be manufactured in accordance with the requirements of any acceptable materials specifications or quality assurance system.

Consequently, as outlined in Section 3.2.2, the steel materials provided are classified as **Class E3** structural steel, and there is no need to specify any material tests. The yield strength of the steel should be conservatively limited to 170 N/mm<sup>2</sup> for structural design or other constructional uses. For example, they can be used as temporary enclosure structure in the construction site.







# Selection of Equivalent Steel Materials to European Steel Materials Specifications

**Professional Guide: PG-003** 

**Second Edition** 





